
Deployment Pipeline

Reference Architecture

September 2022

AWS Global Services Security

Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Table of contents

31. Overview

4Architecture

5Business Outcomes

5Definitions

72. Application Pipeline

7Architecture

18Reference Implementations

0Additional Sources

03. Dynamic Configuration Pipeline

0Architecture

0Reference Implementations

Table of contents

- 2/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

1. Overview

A deployment pipeline is the key architectural construct for performing Continuous Integration, Delivery, and Deployment.

Pipelines consist of a series of stages like source, build, test, or deploy. Stages consist of automated tasks in the software delivery

lifecycle. There are different types of deployment pipelines for different use cases.

The Deployment Pipeline Reference Architecture (DPRA) for AWS workloads describes the stages and actions for different types

of pipelines that exist in modern systems. The DPRA also describes the practices teams employ to increase the velocity, stability,

and security of software systems through the use of deployment pipelines. For a higher-level perspective, see Clare Liguori’s

article in the Amazon Builder’s Library titled Automating safe, hands-off deployments.

Customers and third-party vendors can use the DPRA to create implementations - reference or otherwise - using their own set of

services and tools. We have included reference implementations that use AWS and third-party tools. When an AWS service/tool is

available, we list it; when there are no AWS services/tools, we list third-party tools. There are many third-party tools that can run

on AWS so the ones we chose should only be seen as examples for illustrative purposes. Choose the best tool that meets the

needs of your organization.

The DPRA covers the following deployment pipelines in detail:

Application

Build, test, and

deploy an

application.

Compute Image

Build and publish

machine or container

images.

🛠 under

development 🛠

Account Fleet

Management

Manage a fleet of AWS

accounts through a

pipeline.

🛠 under development

🛠

Dynamic

Configuration

Manage dynamic

configuration for a

workload.

1. Overview

- 3/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-delivery/
https://aws.amazon.com/builders-library/automating-safe-hands-off-deployments

Architecture

A typical solution uses multiple or all of the pipelines in combination as follows:

Deployment Pipelines AWS Accounts

Legend

Required

Recommended

createAccount Fleet M...

use during application compute image build

deployApplication Pipe...

publish

ProductionGamma

deployDynamic Configur... Dynamic Configuration

read

Beta

Base Compute ImagesCompute Image Pi...

Text is not SVG - cannot display

Architecture

- 4/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Business Outcomes

Modern deployment pipelines create the following business outcomes:

Automation - Everything necessary to build, test, deploy, and run an application should be defined as code - code for

pipelines, accounts, networking, infrastructure, applications/services, configuration, data, security, compliance, governance,

auditing, and documentation – any aspect inside and outside software systems.

Consistency - The source code should only be built and packaged once. The packaged artifact should then be staged in a

registry with appropriate metadata and ready for deployment to any environment. Build artifacts only once and then promote

them through the pipeline. The output of the pipeline should be versioned and able to be traced back to the source it was built

from and from the business requirements that defined it.

Small Batches - The pipeline should be constructed in such a way as to encourage the delivery of software early and often.

This is accomplished by removing toil from the software delivery process through automation and fast feedback. Likewise, the

pipeline should discourage the use of long-lived branches and encourage trunk-based development. Developers should be able

to merge their changes to the trunk and deploy through the pipeline daily.

Orchestration - As part of a deployment pipeline, every merged code change has a fully-automated build, test, publish, deploy,

and release process run across all environments. Each stage automatically transitions to the next stage of the pipeline upon

success, or stops on failure. In some circumstances human approvals are necessary while organizations mature their

automation practices. These approvals most often show up when automation is unable to assess the risk or specific context for

approval. If used, human approvals should be used before production deployments only and should be reduced to a button-

click interface that triggers an automated pipeline process to continue. A single pipeline should orchestrate the deployment to

all environments rather than creating pipelines for each environment.

Fast Feedback - Automatically notify engineers as soon as possible of build, test, quality, and security errors from deployment

pipelines through the most effective means such as chat or email.

Always Deployable - When an error occurs in the mainline of a deployment pipeline, the top priority is to fix the build and

ensure deployment obtains and remains in a healthy state before introducing any further changes. The pipeline should be the

authoritative source for deciding if and when changes are ready to be released into production.

Measured - Provide real-time metrics for code quality, speed (deployment frequency and deployment lead time), security

(security control automation %, mean time to resolve security errors), and reliability (change failures and time to restore

service). View metrics through a real-time dashboard. When instrumentation is not yet possible, create a Likert-based

questionnaire to determine these metrics across teams.

Definitions

Component

A component is the code, configuration, and AWS Resources that together deliver against a requirement. A component is often

the unit of technical ownership, and is decoupled from other components.

(source: AWS Well-Architected Framework definitions)

Workload

A workload is a set of components that together deliver business value. A workload is usually the level of detail that business

and technology leaders communicate about. Examples of workloads are marketing websites, e-commerce websites, the back-ends

for a mobile app, analytic platforms, etc. Workloads vary in levels of architectural complexity, from static websites to

architectures with multiple data stores and many components.

(source: AWS Well-Architected Framework)

Environment

An environment is an isolated target for deploying and testing a workload and its dependencies. Environments can be created

for validating changes, achieving data compliance, or for improving resiliency. Example environments include creating separate

•

•

•

•

•

•

•

Business Outcomes

- 5/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://en.wikipedia.org/wiki/Likert_scale
https://docs.aws.amazon.com/wellarchitected/latest/framework/definitions.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html

AWS accounts for each developer, creating separate AWS accounts for staging and production, and using multiple regions for

production traffic. Best practice is for each environment to run in a separate AWS account.

Environment

- 6/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

2. Application Pipeline

Architecture

The term "Application" is used synonymously with the term "Component" as defined by the Well-Architected Framework and

other DPRA pipelines. Applications are the most common use case for a deployment pipeline. This pipeline type will take source

code files, tests, static analysis, database deployment, configuration, and other code to perform build, test, deploy, and release

processes. The pipeline launches an environment from the compute image artifacts generated in the compute image pipeline.

Automated tests are run on the environment(s) as part of the deployment pipeline.

This pipeline encourages trunk based development in which developers frequently avoid long-lived branches and regulary

commit their changes to the trunk. Therefore this pipeline only executes for commits to the trunk. Every commit to the trunk has

a change to go to production if all steps of the pipeline complete successfully.

The expected outcome of this pipeline is to be able to safely release software changes to customers within a couple hours.

Deployment pipelines should publish the following metrics:

Lead time – the average amount of time it takes for a single commit to get all the way into production.

Deploy frequency – the number of production deployments within a given time period.

Mean time between failure (MTBF) – the average amount of time between the start of a successful pipeline and the start of a

failed pipeline.

Mean time to recover (MTTR) – the average amount of time between the start of a failed pipeline and the start of the next

successful pipeline.

Local Development

Deployment Pipeline

Build Code

Legend

Unit Tests

Secrets Detection

Code Quality%3Cmx...

SAST

Required

Recommended

Source Stage Build Stage Test (Beta) Stage Test (Gamma) Stage Prod Stage

Build Code

Unit Tests

Secrets Detection

Code Quality%3Cmx...

SAST

Package Artifacts

SCA

SBOM

Application Source

Test Source

Static Assets

Infrastructure So...

Dependency Manife...

Configuration

Database Source

Launch Environment

Integration Tests

Acceptance Tests

Database Deploy

Deploy Software

Launch Environment

Database Deploy

Monitoring & Logg...

Deploy Software

Synthetic Tests

Performance Tests

Resilience Tests

DAST

Manual Approval

Database Deploy

Synthetic Tests

Progressive Deplo...

Text is not SVG - cannot display

•

•

•

•

2. Application Pipeline

- 7/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://docs.aws.amazon.com/wellarchitected/latest/framework/definitions.html

Each stage below will include a required and recommended actions. The actions will include guidance on what steps out to be

perfomed in each action. References will be made to real-life examples of tools to help better define the actions involved in each

stage. The use of these examples is not an endorsement of any specific tool.

Local Development

Developers need fast-feedback for potential issues with their code. Automation should run in their developer workspace to give

them feedback before the deployment pipeline runs.

Pre-Commit hooks are scripts that are executed on the developer's workstation when they try to create a new commit. These hooks

have an opportunity to inspect the state of the code before the commit occurs and abort the commit if tests fail. An example of pre-

commit hooks are Git hooks. Examples of tools to configure and store pre-commit hooks as code include but are not limited to husky

and pre-commit.

Warn developers of potential issues with their source code in their IDE using plugins and extensions including but not limited to

Visual Studio Code - Python Extension and IntelliJ IDEA - JavaScript linters.

Source

The source stage pulls in various types of code from a distributed version control system.

Code that is compiled, transpiled or interpreted for the purpose of delivering business capabilities through applications and/or

services.

Code that verifies the expected functionality of the Application Source Code and the Infrastructure Source Code. This includes

source code for unit, integration, end-to-end, capacity, chaos, and synthetic testing. All Test Source Code is required to be stored in

the same repository as the app to allow tests to be created and updated on the same lifecycle as the Application Source Code.

Code that defines the infrastructure necessary to run the Application Source Code. Examples of infrastructure source code include

but are not limited to AWS Cloud Development Kit, AWS CloudFormation and HashiCorp Terraform. All Infrastructure Source Code is

required to be stored in the same repository as the app to allow infrastructure to be created and updated on the same lifecycle as

the Application Source Code.

Assets used by the Application Source Code such as html, css, and images.

References to third-party code that is used by the Application Source Code. This could be libraries created by the same team, a

separate team within the same organization, or from an external entity.

Pre-Commit Hooks

IDE Plugins

Application Source Code

Test Source Code

Infrastructure Source Code

Static Assets

Dependency Manifests

Local Development

- 8/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks#_git_hooks
https://github.com/typicode/husky
https://pre-commit.com/#install
https://code.visualstudio.com/docs/python/linting
https://www.jetbrains.com/help/idea/linters.html
https://aws.amazon.com/cdk/
https://aws.amazon.com/cloudformation/
https://www.terraform.io/

Files (e.g. JSON, XML, YAML or HCL) used to configure the behavior of the Application Source Code. Any configuration that is

environment specific should not be included in Application Source Code. Environment specific configuration should be defined in the

Infrastructure Source Code and injected into the application at runtime through a mechanism such as environment variables.

Code that defines the schema and reference data of the database used by the Application Source Code. Examples of database source

code include but are not limited to Liquibase. If the Application Source Code uses a private database that no other application

accesses, then the database source code is required to be stored in the same repository as the Application Source Code. This allows

the Application Source Code and Database Source Code to be updated on the same lifecycle. However, if the database is shared by

multiple applications then the Database Source Code should be maintained in a separate repository and managed by separate

pipeline. It should be noted that this is undesireable as it introduces coupling between applications.

All the above source code is versioned and securely accessed through role based access control with source code repositories

including but not limited to AWS CodeCommit, GitHub, GitLab, and Bitbucket.

Build

All actions run in this stage are also run on developer's local environments prior to code commit and peer review. Actions in this

stage should all run in less than 10 minutes so that developers can take action on fast feedback before moving on to their next

task. If it’s taking more time, consider decoupling the system to reduce dependencies, optimizing the process, using more

efficient tooling, or moving some of the actions to latter stages. Each of the actions below are defined and run in code.

Convert code into artifacts that can be promoted through environments. Most builds complete in seconds. Examples include but are

not limited to Maven and tsc.

Run the test code to verify that individual functions and methods of classes, components or modules of the Application Source Code

are performing according to expectations. These tests are fast-running tests with zero dependencies on external systems returning

results in seconds. Examples of unit testing frameworks include but are not limited to JUnit, Jest, and pytest. Test results should be

published somewhere such as AWS CodeBuild Test Reports.

Static Configuration

Database Source Code

Build Code

Unit Tests

Build

- 9/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://www.liquibase.org/
https://aws.amazon.com/codecommit/
https://github.com
https://gitlab.com
https://bitbucket.org
https://maven.apache.org/
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://junit.org/
https://jestjs.io/
https://pytest.org/
https://docs.aws.amazon.com/codebuild/latest/userguide/test-reporting.html

Run various automated static analysis tools that generate reports on code quality, coding standards, security, code coverage, and

other aspects according to the team and/or organization’s best practices. AWS recommends that teams fail the build when important

practices are violated (e.g., a security violation is discovered in the code). These checks usually run in seconds. Examples of tools to

measure code quality include but are not limited to Amazon CodeGuru, SonarQube, black, and ESLint.

Identify secrets such as usernames, passwords, and access keys in code. When discovering secrets, the build should fail immediately.

Examples of secret detection tools include but are not limited to GitGuardian and gitleaks.

Analyze code for application security violations such as XML External Entity Processing, SQL Injection, and Cross Site Scripting. Any

findings that exceed the configured threshold will immediately fail the build and stop any forward progress in the pipeline. Examples

of tools to perform static application security testing include but are not limited to Amazon CodeGuru, SonarQube, and Checkmarx.

Code Quality

Secrets Detection

Static Application Security Testing (SAST)

Build

- 10/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://aws.amazon.com/codeguru/
https://www.sonarqube.org/
https://github.com/psf/black
https://eslint.org/
https://www.gitguardian.com/
https://github.com/zricethezav/gitleaks
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/xss/
https://aws.amazon.com/codeguru/
https://www.sonarqube.org/
https://checkmarx.com/

While the Build Code action will package most of the relevant artifacts, there may be additional steps to automate for packaging the

code artifacts. Artifacts should only be built and packaged once and then deployed to various environments to validate the artifact.

Artifacts should never be rebuilt during subsequent deploy stages. Once packaged, automation is run in this action to store the

artifacts in an artifact repository for future deployments. Examples of artifact repositories include but are not limited to AWS

CodeArtifact, Amazon ECR, Nexus, and JFrog Artifactory.

Packages should be signed with a digital-signature to allow deployment processes to confirm the code being deployed is from a

trusted publisher and has not been altered. AWS Signer can be used to cryptographically sign code for AWS Lambda applications and

AWS-supported IoT devices.

Run software composition analysis (SCA) tools to find vulnerabilities to package repositories related to open source use, licensing,

and security vulnerabilities. SCA tools also launch workflows to fix these vulnerabilities. Any findings that exceed the configured

threshold will immediately fail the build and stop any forward progress in the pipeline. These tools also require a software bill of

materials (SBOM) exist. Example SCA tools include but are not limited to Dependabot, Snyk, and Blackduck.

Generate a software bill of materials (SBOM) report detailing all the dependencies used. Examples of SBOM formats include SPDX

and CycloneDX

Test (Beta)

Testing is performed in a beta environment to validate that the latest code is functioning as expected. This validation is done by

first deploying the code and then running integration and end-to-end tests against the deployment. Beta environments will have

dependencies on the applications and services from other teams in their gamma environments. All actions performed in this

stage should complete within 30 minutes to provide fast-feedback.

Package and Store Artifact(s)

Software Composition Analysis (SCA)

Software Bill of Materials (SBOM)

Test (Beta)

- 11/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://aws.amazon.com/codeartifact/
https://aws.amazon.com/codeartifact/
https://aws.amazon.com/ecr/
https://www.sonatype.com/products/nexus-repository
https://jfrog.com/artifactory/
https://docs.aws.amazon.com/signer/index.html
https://github.com/dependabot
https://snyk.io/product/open-source-security-management/
https://www.blackducksoftware.com/
https://spdx.dev/wp-content/uploads/sites/41/2020/08/SPDX-specification-2-2.pdf
https://cyclonedx.org/

Use a compute image from an image repository (e.g., AMI or a container repo) and launch an environment from the image using

Infrastructure Source Code. The beta image is generally not accessible to public customers and is only used for internal software

validation. The beta environment should be in a different AWS Account from the tools used to run the deployment pipeline. Access to

the beta environment should be handled via cross-account IAM roles rather than long lived credentials from IAM users. Example

tools for defining infrastructure code include but are not limited to AWS Cloud Development Kit, AWS CloudFormation and

HashiCorp Terraform.

Apply changes to the beta database using the Database Source Code. Changes should be made in a manner that ensures rollback

safety. Best practice is to connect to the beta database through cross-account IAM roles and IAM database authentication for RDS

rather than long lived database credentials. If database credentials must be used, then they should be loaded from a secret manager

such as AWS Secrets Manager. Changes to the database should be incremental, only applying the changes since the prior

deployment. Examples of tools that apply incremental database changes include but are not limited to Liquibase, VS Database

Project, and Flyway.

Test data management is beyond the scope of this reference architecuture but should be addressed during Database Deploy in

preparation of subsequent testing activity.

Deploy software to the beta environment. Software is not deployed from source but rather the artifact that was packaged and stored

in the Build Stage will be used for the deployment. Software to be deployed should include digital signatures to verify that the

software came from a trusted source and that no changes were made to the software. Software deployments should be performed

through Infrastructure Source Code. Access to the beta environment should be handled via cross-account IAM roles rather than long

lived credentials from IAM users. Examples of tools to deploy software include but are not limited to AWS CodeDeploy, Octopus

Deploy, and Spinnaker.

Launch Environment

Database Deploy

Deploy Software

Test (Beta)

- 12/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://aws.amazon.com/cdk/
https://aws.amazon.com/cloudformation/
https://www.terraform.io/
https://aws.amazon.com/builders-library/ensuring-rollback-safety-during-deployments/
https://aws.amazon.com/builders-library/ensuring-rollback-safety-during-deployments/
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://aws.amazon.com/secrets-manager/
https://www.liquibase.org/
https://learn.microsoft.com/en-us/aspnet/web-forms/overview/deployment/web-deployment-in-the-enterprise/deploying-database-projects
https://learn.microsoft.com/en-us/aspnet/web-forms/overview/deployment/web-deployment-in-the-enterprise/deploying-database-projects
https://www.red-gate.com/products/flyway/
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://aws.amazon.com/codedeploy/
https://octopus.com/
https://octopus.com/
https://spinnaker.io/

Run automated tests that verify if the application satisifes business requirements. These tests require the application to be running

in the beta environment. Integration tests may come in the form of behavior-driven tests, automated acceptance tests, or automated

tests linked to requirements and/or stories in a tracking system. Test results should be published somewhere such as AWS CodeBuild

Test Reports. Examples of tools to define integration tests include but are not limited to Cucumber, vRest, and SoapUI.

Run automated testing from the users’ perspective in the beta environment. These tests verify the user workflow, including when

performed through a UI. These test are the slowest to run and hardest to maintain and therefore it is recommended to only have a

few end-to-end tests that cover the most important application workflows. Test results should be published somewhere such as AWS

CodeBuild Test Reports. Examples of tools to define end-to-end tests include but are not limited to Cypress, Selenium, and Telerik

Test Studio.

Test (Gamma)

Testing is performed in a gamma environment to validate that the latest code can be safely deployed to production. The

environment is as production-like as possible including configuration, monitoring, and traffic. Additionally, the environment

should match the same regions that the production environment uses. The gamma environment is used by other team's beta

environments and therefore must maintain acceptable service levels to avoid impacting other team productivity. All actions

performed in this stage should complete within 30 minutes to provide fast-feedback.

Integration Tests

Acceptance Tests

Test (Gamma)

- 13/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://docs.aws.amazon.com/codebuild/latest/userguide/test-reporting.html
https://docs.aws.amazon.com/codebuild/latest/userguide/test-reporting.html
https://cucumber.io
https://vrest.io/
https://www.soapui.org
https://docs.aws.amazon.com/codebuild/latest/userguide/test-reporting.html
https://docs.aws.amazon.com/codebuild/latest/userguide/test-reporting.html
https://cypress.io
https://selenium.dev
https://www.telerik.com/teststudio
https://www.telerik.com/teststudio

Use the compute image from an image repository (e.g., AMI or a container repo) and launch an environment from the image using

Infrastructure Source Code. The gamma environment should be in a different AWS Account from the tools used to run the

deployment pipeline. Access to the gamma environment should be handled via cross-account IAM roles rather than long lived

credentials from IAM users. Example tools for defining infrastructure code include but are not limited to AWS Cloud Development

Kit, AWS CloudFormation and HashiCorp Terraform.

Apply changes to the gamma database using the Database Source Code. Changes should be made in a manner that ensures rollback

safety. Best practice is to connect to the gamma database through cross-account IAM roles and IAM database authentication for RDS

rather than long lived database credentials. If database credentials must be used, then they should be loaded from a secret manager

such as AWS Secrets Manager. Changes to the database should be incremental, only applying the changes since the prior

deployment. Examples of tools that apply incremental database changes include but are not limited to Liquibase, VS Database

Project, and Flyway.

Deploy software to the gamma environment. Software is not deployed from source but rather the artifact that was packaged and

stored in the Build Stage will be used for the deployment. Software to be deployed should include digital signatures to verify that the

software came from a trusted source and that no changes were made to the software. Software deployments should be performed

through Infrastructure Source Code. Access to the gamma environment should be handled via cross-account IAM roles rather than

long lived credentials from IAM users. Examples of tools to deploy software include but are not limited to AWS CodeDeploy, Octopus

Deploy, and Spinnaker.

Launch Environment

Database Deploy

Deploy Software

Test (Gamma)

- 14/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://aws.amazon.com/cdk/
https://aws.amazon.com/cdk/
https://aws.amazon.com/cloudformation/
https://www.terraform.io/
https://aws.amazon.com/builders-library/ensuring-rollback-safety-during-deployments/
https://aws.amazon.com/builders-library/ensuring-rollback-safety-during-deployments/
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://aws.amazon.com/secrets-manager/
https://www.liquibase.org/
https://learn.microsoft.com/en-us/aspnet/web-forms/overview/deployment/web-deployment-in-the-enterprise/deploying-database-projects
https://learn.microsoft.com/en-us/aspnet/web-forms/overview/deployment/web-deployment-in-the-enterprise/deploying-database-projects
https://www.red-gate.com/products/flyway/
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://aws.amazon.com/codedeploy/
https://octopus.com/
https://octopus.com/
https://spinnaker.io/

Monitor deployments across regions and fail when threshold breached. The thresholds for metric alarms should be defined in the

Infrastructure Source Code and deployed along with the rest of the infrastructure in an environment. Ideally, deployments should be

automatically failed and rolled back when error thresholds are breached. Examples of automated rollback include AWS

CloudFormation monitor & rollback, AWS CodeDeploy rollback and Flagger.

Tests that run continuously in the background in a given environment to generate traffic and verify the system is healthy. These tests

serve two purposes: 1/ Ensure there is always adequate traffic in the environment to trigger alarms if a deployment is unhealthy 2/

Test specific workflows and assert that the system is functioning correctly. Examples of tools that can be used for synthetic tests

include but are not limited to Amazon CloudWatch Synthetics,Dynatrace Synthetic Monitoring, and Datadog Synthetic Monitoring.

Run longer-running automated capacity tests against environments that simulate production capacity. Measure metrics such as the

transaction success rates, response time and throughput. Determine if application meets performance requirements and compare

metrics to past performance to look for performance degredation. Examples of tools that can be used for performance tests include

but are not limited to JMeter, Locust, and Gatling.

Application Monitoring & Logging

Synthetic Tests

Performance Tests

Test (Gamma)

- 15/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-rollback-triggers.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-rollback-triggers.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployments-rollback-and-redeploy.html
https://flagger.app/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://www.dynatrace.com/monitoring/platform/synthetic-monitoring/
https://docs.datadoghq.com/synthetics/
https://jmeter.apache.org
https://locust.io/
https://gatling.io

Inject failures into environments to identify areas of the application that are susceptible to failure. Tests are defined as code and

applied to the environment while the system is under load. The success rate, response time and throughput are measured during the

periods when the failures are injected and compared to periods without the failures. Any significant deviation should fail the pipeline.

Examples of tools that can be used for chaos/resilience testing include but are not limited to AWS Fault Injection Simulator, Gremlin,

and ChaosToolkit.

Perform testing of web applications and APIs by running automated scans against it to identify vulnerabilities through techniques

such as cross-site scripting (XSS) and SQL injection(SQLi). Examples of tools that can be used for dynamic application security

testing include but are not limited to OWASP ZAP, StackHawk, and AppScan. See AWS Guidance on Penetration Testing for info on

penetration testing in an AWS environment.

Prod

As part of an automated workflow, obtain authorized human approval before deploying to the production environment.

Apply changes to the production database using the Database Source Code. Changes should be made in a manner that ensures

rollback safety. Best practice is to connect to the production database through cross-account IAM roles and IAM database

authentication for RDS rather than long lived database credentials. If database credentials must be used, then they should be loaded

from a secret manager such as AWS Secrets Manager. Changes to the database should be incremental, only applying the changes

since the prior deployment. Examples of tools that apply incremental database changes include but are not limited to Liquibase, VS

Database Project, and Flyway.

Resilience Tests

Dynamic Application Security Testing (DAST)

Manual Approval

Database Deploy

Prod

- 16/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://aws.amazon.com/fis/
https://www.gremlin.com/
https://chaostoolkit.org/
https://owasp.org/www-project-zap
https://www.stackhawk.com/
https://www.hcltechsw.com/appscan
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/builders-library/ensuring-rollback-safety-during-deployments/
https://aws.amazon.com/builders-library/ensuring-rollback-safety-during-deployments/
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://aws.amazon.com/secrets-manager/
https://www.liquibase.org/
https://learn.microsoft.com/en-us/aspnet/web-forms/overview/deployment/web-deployment-in-the-enterprise/deploying-database-projects
https://learn.microsoft.com/en-us/aspnet/web-forms/overview/deployment/web-deployment-in-the-enterprise/deploying-database-projects
https://www.red-gate.com/products/flyway/

Deployments should be made progressively in waves to limit the impact of failures. A common approach is to deploy changes to a

subset of AWS regions and allow sufficient bake time to monitor performance and behavior before proceeding with additional waves

of AWS regions.

Software should be deployed using one of progressive deployment involving controlled rollout of a change through techniques such

as canary deployments, feature flags, and traffic shifting. Software deployments should be performed through Infrastructure Source

Code. Access to the production environment should be handled via cross-account IAM roles rather than long lived credentials from

IAM users. Examples of tools to deploy software include but are not limited to AWS CodeDeploy. Ideally, deployments should be

automatically failed and rolled back when error thresholds are breached. Examples of automated rollback include AWS

CloudFormation monitor & rollback, AWS CodeDeploy rollback and Flagger.

Tests that run continuously in the background in a given environment to generate traffic and verify the system is healthy. These tests

serve two purposes: 1/ Ensure there is always adequate traffic in the environment to trigger alarms if a deployment is unhealthy 2/

Test specific workflows and assert that the system is functioning correctly. Examples of tools that can be used for synthetic tests

include but are not limited to Amazon CloudWatch Synthetics,Dynatrace Synthetic Monitoring, and Datadog Synthetic Monitoring.

Progressive Deployment

Synthetic Tests

Prod

- 17/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://aws.amazon.com/codedeploy/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-rollback-triggers.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-rollback-triggers.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployments-rollback-and-redeploy.html
https://flagger.app/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://www.dynatrace.com/monitoring/platform/synthetic-monitoring/
https://docs.datadoghq.com/synthetics/

Reference Implementations

AWS CDK Pipeline

This presents a reference implementation of the Application Pipeline reference architecture. The pipeline is built with AWS

CodePipeline and uses AWS CodeBuild for building the software and performing testing tasks. All the infrastructure for this

reference implementation is defined with AWS Cloud Development Kit. The pipelines are defined using the CDK Pipelines L3

constructs. The source code for this reference implementation is available in GitHub for running in your own local account.

This reference implementation is intended to serve as an example of how to accomplish the guidance in the reference architecture

using CDK Pipelines. The reference implementation has intentionally bypassed the following AWS Well-Architected best practices to

make it accessible by a wider range of customers. Be sure to address these before using parts of this code for any workloads in your

own environment:

Deployment Pipeline

Legend

Implemented

Not Implemented

Source Stage Build Stage Test (Beta) Stage Test (Gamma) Stage Prod Stage

Build Code

Unit Tests

Secrets Detection

Code Quality%3Cmx...

SAST

Package Artifacts

SCA

SBOM

Application Source

Test Source

Static Assets

Infrastructure So...

Dependency Manife...

Configuration

Database Source

Launch Environment

Integration Tests

Acceptance Tests

Database Deploy

Deploy Software

Launch Environment

Database Deploy

Monitoring & Logg...

Deploy Software

Synthetic Tests

Performance Tests

Resilience Tests

DAST

Manual Approval

Database Deploy

Synthetic Tests

Progressive Deplo...

Local Development

Build Code

Unit Tests

Secrets Detection

Code Quality%3Cmx...

SAST

Text is not SVG - cannot display

Disclaimer

TLS on HTTP endpoint - the listener for the sample application uses HTTP instead of HTTPS to avoid having to create new ACM

certificates and Route53 hosted zones. This should be replaced in your account with an HTTPS listener.

Reference Implementations

- 18/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/cdk/
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.pipelines-readme.html
https://github.com/aws-samples/aws-deployment-pipeline-reference-architecture/tree/main/examples/cdk-application-pipeline
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.pipelines-readme.html
https://aws.amazon.com/architecture/well-architected/

Local Development

Developers need fast-feedback for potential issues with their code. Automation should run in their developer workspace to give

them feedback before the deployment pipeline runs.

AWS CDK Pipeline

- 19/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Pre-Commit hooks are scripts that are executed on the developer's workstation when they try to create a new commit. These hooks

have an opportunity to inspect the state of the code before the commit occurs and abort the commit if tests fail. An example of pre-

commit hooks are Git hooks. Examples of tools to configure and store pre-commit hooks as code include but are not limited to husky

and pre-commit.

The following .pre-commit-config.yaml is added to the repository that will build the code with Maven, run unit tests with JUnit, check

for code quality with Checkstyle, run static application security testing with PMD and check for secrets in the code with gitleaks.

Pre-Commit Hooks

repos:
- repo: https://github.com/pre-commit/pre-commit-hooks

rev: v2.3.0
hooks:
- id: check-yaml
- id: check-json
- id: trailing-whitespace

- repo: https://github.com/pre-commit/mirrors-eslint
rev: v8.23.0
hooks:
- id: eslint

- repo: https://github.com/ejba/pre-commit-maven
rev: v0.3.3
hooks:
- id: maven-test

- repo: https://github.com/zricethezav/gitleaks
rev: v8.12.0
hooks:

- id: gitleaks

AWS CDK Pipeline

- 20/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks#_git_hooks
https://github.com/typicode/husky
https://pre-commit.com/#install
https://maven.apache.org/
https://junit.org
https://github.com/checkstyle/checkstyle
https://pmd.github.io/latest/index.html
https://github.com/zricethezav/gitleaks

Source

AWS CDK Pipeline

- 21/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The application source code can be found in the src/main/java directory. It is intended to serve only as a reference and should be

replaced by your own application source code.

This reference implementation includes a Spring Boot application that exposes a REST API and uses a database for persistence. The

API is implemented in FruitController.java :

The application source code is stored in AWS CodeCommit repository that is created and initialized from the CDK application in the

CodeCommitSource construct:

Application Source Code

public class FruitController {
/**

 * JPA repository for fruits.
 */

private final FruitRepository repository;

/**
 * Logic to map between entities and DTOs
 */

private final FruitMapper mapper;

FruitController(final FruitRepository r, final FruitMapper m) {
this.repository = r;
this.mapper = m;

}

@GetMapping("/api/fruits")
List<FruitDTO> all() {

return repository.findAll()
.stream()
.map(mapper::toDto)
.collect(Collectors.toList());

}

@PostMapping("/api/fruits")
FruitDTO newFruit(@RequestBody final FruitDTO fruit) {

return mapper.toDto(repository.save(mapper.toEntity(fruit)));
}

@GetMapping("/api/fruits/{id}")
FruitDTO one(@PathVariable final Long id) {

return repository.findById(id)
.map(mapper::toDto)
.orElseThrow(() -> new FruitNotFoundException(id));

}

@PutMapping("/api/fruits/{id}")
FruitDTO replaceFruit(

@RequestBody final FruitDTO newFruit,
@PathVariable final Long id) {

newFruit.setId(id);
return mapper.toDto(repository.save(mapper.toEntity(newFruit)));

}

@DeleteMapping("/api/fruits/{id}")
void deleteFruit(@PathVariable final Long id) {

repository.deleteById(id);
}

}

super(scope, id);
this.trunkBranchName = props?.trunkBranchName || 'main';
let gitignore = fs.readFileSync('.gitignore').toString().split(/\r?\n/);
gitignore.push('.git/');

// Allow canary code to package properly
// see: https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
CloudWatch_Synthetics_Canaries_WritingCanary_Nodejs.html#CloudWatch_Synthetics_Canaries_package
gitignore = gitignore.filter(g => g != 'node_modules/');
gitignore.push('/node_modules/');

const codeAsset = new Asset(this, 'SourceAsset', {
path: '.',
ignoreMode: IgnoreMode.GIT,
exclude: gitignore,

});
this.repository = new Repository(this, 'CodeCommitRepo', {

repositoryName: props.repositoryName,
code: Code.fromAsset(codeAsset, this.trunkBranchName),

});

if (props.associateCodeGuru !== false) {
new CfnRepositoryAssociation(this, 'CfnRepositoryAssociation', {

name: this.repository.repositoryName,
type: 'CodeCommit',

});
}
this.codePipelineSource = CodePipelineSource.codeCommit(this.repository, this.trunkBranchName);

AWS CDK Pipeline

- 22/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://github.com/aws-samples/aws-deployment-pipeline-reference-architecture/tree/main/examples/cdk-application-pipeline/src/main/java
https://spring.io/projects/spring-boot
https://aws.amazon.com/codecommit/

The test source code can be found in the src/test/java directory. It is intended to serve only as a reference and should be replaced by

your own test source code.

The reference implementation includes source code for unit, integration and end-to-end testing. Unit and integration tests can be

found in src/test/java . For example, FruitControllerWithoutClassificationTest.java performs unit tests of each API path with the

JUnit testing library:

Acceptance tests are preformed with SoapUI and are defined in fruit-api-soapui-project.xml . They are executed by Maven using

plugins in pom.xml .

Test Source Code

public void shouldReturnList() throws Exception {
when(repository.findAll()).thenReturn(Arrays.asList(new Fruit("Mango", FruitClassification.pome), new Fruit("Dragonfruit", FruitClassification.berry)));

this.mockMvc.perform(get("/api/fruits")).andDo(print()).andExpect(status().isOk())
.andExpect(content().json("[{\"name\": \"Mango\"}, {\"name\": \"Dragonfruit\"}]"));

}

AWS CDK Pipeline

- 23/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://github.com/aws-samples/aws-deployment-pipeline-reference-architecture/tree/main/examples/cdk-application-pipeline/src/test/java
https://junit.org/
https://www.soapui.org/
https://maven.apache.org/

The infrastructure source code can be found in the infrastructure directory. It is intended to serve as a reference but much of the

code can also be reused in your own CDK applications.

Infrastructure source code defines both the deployment of the pipeline and the deployment of the application are stored in

infrastructure/ folder and uses AWS Cloud Development Kit.

Infrastructure Source Code

super(scope, id, props);

const image = new AssetImage('.', { target: 'build' });

const appName = Stack.of(this).stackName.toLowerCase().replace(`-${Stack.of(this).region}-`, '-');
const vpc = new ec2.Vpc(this, 'Vpc', {

maxAzs: 3,
natGateways: props?.natGateways,

});
new FlowLog(this, 'VpcFlowLog', { resourceType: FlowLogResourceType.fromVpc(vpc) });

const dbName = 'fruits';
const dbSecret = new DatabaseSecret(this, 'AuroraSecret', {

username: 'fruitapi',
secretName: `${appName}-DB`,

});
const db = new ServerlessCluster(this, 'AuroraCluster', {

engine: DatabaseClusterEngine.AURORA_MYSQL,
vpc,
credentials: Credentials.fromSecret(dbSecret),
defaultDatabaseName: dbName,
deletionProtection: false,
clusterIdentifier: appName,

});

const cluster = new ecs.Cluster(this, 'Cluster', {
vpc,
containerInsights: true,
clusterName: appName,

});
const appLogGroup = new LogGroup(this, 'AppLogGroup', {

retention: RetentionDays.ONE_WEEK,
logGroupName: `/aws/ecs/service/${appName}`,
removalPolicy: RemovalPolicy.DESTROY,

});
let deploymentConfig: IEcsDeploymentConfig | undefined = undefined;
if (props?.deploymentConfigName) {

deploymentConfig = EcsDeploymentConfig.fromEcsDeploymentConfigName(this, 'DeploymentConfig', props.deploymentConfigName);
}
const appConfigEnabled = props?.appConfigRoleArn !== undefined && props.appConfigRoleArn.length > 0;
const service = new ApplicationLoadBalancedCodeDeployedFargateService(this, 'Api', {

cluster,
capacityProviderStrategies: [

{
capacityProvider: 'FARGATE_SPOT',
weight: 1,

},
],
minHealthyPercent: 50,
maxHealthyPercent: 200,
desiredCount: 3,
cpu: 512,
memoryLimitMiB: 1024,
taskImageOptions: {

image,
containerName: 'api',
containerPort: 8080,
family: appName,
logDriver: AwsLogDriver.awsLogs({

logGroup: appLogGroup,
streamPrefix: 'service',

}),
secrets: {

SPRING_DATASOURCE_USERNAME: Secret.fromSecretsManager(dbSecret, 'username'),
SPRING_DATASOURCE_PASSWORD: Secret.fromSecretsManager(dbSecret, 'password'),

},
environment: {

SPRING_DATASOURCE_URL: `jdbc:mysql://${db.clusterEndpoint.hostname}:${db.clusterEndpoint.port}/${dbName}`,
APPCONFIG_AGENT_APPLICATION: this.node.tryGetContext('workloadName'),
APPCONFIG_AGENT_ENVIRONMENT: this.node.tryGetContext('environmentName'),
APPCONFIG_AGENT_ENABLED: appConfigEnabled.toString(),

},
},
deregistrationDelay: Duration.seconds(5),
responseTimeAlarmThreshold: Duration.seconds(3),
targetHealthCheck: {

healthyThresholdCount: 2,
unhealthyThresholdCount: 2,
interval: Duration.seconds(60),
path: '/actuator/health',

},
deploymentConfig,
terminationWaitTime: Duration.minutes(5),
apiCanaryTimeout: Duration.seconds(5),
apiTestSteps: [{

name: 'getAll',
path: '/api/fruits',

AWS CDK Pipeline

- 24/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://github.com/aws-samples/aws-deployment-pipeline-reference-architecture/tree/main/examples/cdk-application-pipeline/infrastructure
https://aws.amazon.com/cdk/

Notice that the infrastructure code is written in Typescript which is different from the Application Source Code (Java). This was done

intentionally to demonstrate that CDK allows defining infrastructure code in whatever language is most appropriate for the team that

owns the use of CDK in the organization.

There are no static assets used by the sample application.

All third-party dependencies used by the sample application are define in the pom.xml :

jmesPath: 'length(@)',
expectedValue: 5,

}],
});

if (appConfigEnabled) {
service.taskDefinition.addContainer('appconfig-agent', {

image: ecs.ContainerImage.fromRegistry('public.ecr.aws/aws-appconfig/aws-appconfig-agent:2.x'),
essential: false,
logging: AwsLogDriver.awsLogs({

logGroup: appLogGroup,
streamPrefix: 'service',

}),
environment: {

SERVICE_REGION: this.region,
ROLE_ARN: props!.appConfigRoleArn!,
ROLE_SESSION_NAME: appName,
LOG_LEVEL: 'info',

},
portMappings: [{ containerPort: 2772 }],

});

service.taskDefinition.addToTaskRolePolicy(new PolicyStatement({
actions: ['sts:AssumeRole'],
resources: [props!.appConfigRoleArn!],

}));
}

service.service.connections.allowTo(db, Port.tcp(db.clusterEndpoint.port));

this.apiUrl = new CfnOutput(this, 'endpointUrl', {
value: `http://${service.listener.loadBalancer.loadBalancerDnsName}`,

});

Static Assets

Dependency Manifests

<dependencies>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>

</dependency>
<dependency>

<groupId>org.liquibase</groupId>
<artifactId>liquibase-core</artifactId>

</dependency>
</dependencies>

AWS CDK Pipeline

- 25/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://www.typescriptlang.org/

Static configuration for the application is defined in src/main/resources/application.yml :

Static Configuration

spring:
application:

name: fruit-api
main:

banner-mode: "off"
jackson:

default-property-inclusion: non_null

springdoc:
swagger-ui:

path: /swagger-ui

appconfig-agent:
environment: alpha
log-level-from:

configuration: operations

AWS CDK Pipeline

- 26/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The database source code can be found in the src/main/resources/db directory. It is intended to serve only as a reference and should

be replaced by your own database source code.

The code that manages the schema and initial data for the application is defined using Liquibase in src/main/resources/db/changelog/

db.changelog-master.yml :

Database Source Code

databaseChangeLog:
- changeSet:

id: "1"
author: AWS
changes:
- createTable:

tableName: fruit
columns:
- column:

name: id
type: bigint
autoIncrement: true
constraints:

primaryKey: true
nullable: false

- column:
name: name
type: varchar(250)

- insert:
tableName: fruit
columns:
- column:

name: name
value: Apple

- insert:
tableName: fruit
columns:
- column:

name: name
value: Orange

- insert:
tableName: fruit
columns:
- column:

name: name
value: Banana

- insert:
tableName: fruit
columns:
- column:

name: name
value: Cherry

- insert:
tableName: fruit
columns:
- column:

name: name
value: Grape

- changeSet:
id: "2"
author: AWS
changes:
- addColumn:

tableName: fruit
columns:
- column:

name: classification
type: varchar(250)
constraints:

nullable: true

- update:
tableName: fruit
columns:
- column:

name: classification
value: pome

where: name='Apple'

- update:
tableName: fruit
columns:
- column:

name: classification
value: berry

where: name='Orange'

- update:
tableName: fruit
columns:
- column:

AWS CDK Pipeline

- 27/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://github.com/aws-samples/aws-deployment-pipeline-reference-architecture/tree/main/examples/cdk-application-pipeline/src/main/resources/db
https://www.liquibase.org/

Build

Actions in this stage all run in less than 10 minutes so that developers can take action on fast feedback before moving on to their

next task. Each of the actions below are defined as code with AWS Cloud Development Kit.

The Java source code is compiled, unit tested and packaged by Maven. A step is added to the pipeline through a CDK construct

called MavenBuild :

name: classification
value: berry

where: name='Banana'

- update:
tableName: fruit
columns:
- column:

name: classification
value: drupe

where: name='Cherry'

- update:
tableName: fruit
columns:
- column:

name: classification
value: berry

where: name='Grape'

Build Code

const stepProps = {
input: props.source,
commands: [],
buildEnvironment: {

buildImage: LinuxBuildImage.STANDARD_6_0,
},
partialBuildSpec: BuildSpec.fromObject({

env: {
variables: {

MAVEN_OPTS: props.mavenOpts || '-XX:+TieredCompilation -XX:TieredStopAtLevel=1',
MAVEN_ARGS: props.mavenArgs || '--batch-mode --no-transfer-progress',

},
},
phases: {

install: {
'runtime-versions': {

java: (props.javaRuntime || 'corretto17'),
},

},
build: {

commands: [`mvn \${MAVEN_ARGS} clean ${props.mavenGoal || 'verify'}`],
},

},
cache: props.cacheBucket ? {

paths: ['/root/.m2/**/*'],
} : undefined,
reports: {

unit: {
'files': ['target/surefire-reports/*.xml'],
'file-format': 'JUNITXML',

},
integration: {

'files': ['target/soapui-reports/*.xml'],
'file-format': 'JUNITXML',

},
},
version: '0.2',

}),
cache: props.cacheBucket ? Cache.bucket(props.cacheBucket) : undefined,
primaryOutputDirectory: '.',

};
super(id, stepProps);

AWS CDK Pipeline

- 28/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://aws.amazon.com/cdk/
https://maven.apache.org/

The unit tests are run by Maven at the same time the Build Code action occurs. The results of the unit tests are uploaded to AWS

Code Build Test Reports to track over time.

Unit Tests

AWS CDK Pipeline

- 29/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://maven.apache.org/
https://docs.aws.amazon.com/codebuild/latest/userguide/test-reporting.html
https://docs.aws.amazon.com/codebuild/latest/userguide/test-reporting.html

A CDK construct was created to require that Amazon CodeGuru performed a review on the most recent changes and that the

recommendations don't exceed the severity thresholds. If no review was found or if the severity thresholds were exceeded, the

pipeline fails. The construct is added to the pipeline with:

The Filter attribute can be customized to control what categories of recommendations are considered and what the thresholds are:

Additionally, cdk-nag is run against both the pipeline stack and the deployment stack to identify any security issues with the

resources being created. The pipeline will fail if any are detected. The following code demonstrates how cdk-nag is called as a part of

the build stage. The code also demonstrates how to suppress findings.

Code Quality

import { CodeGuruReviewCheck, CodeGuruReviewFilter } from './codeguru-review-check';

⋯

const codeGuruSecurity = new CodeGuruReviewCheck('CodeGuruSecurity', {
source: source.codePipelineSource,
reviewRequired: false,
filter: CodeGuruReviewFilter.defaultCodeSecurityFilter(),

});
const codeGuruQuality = new CodeGuruReviewCheck('CodeGuruQuality', {

source: source.codePipelineSource,
reviewRequired: false,
filter: CodeGuruReviewFilter.defaultCodeQualityFilter(),

});

export enum CodeGuruReviewRecommendationCategory {
AWS_BEST_PRACTICES = 'AWSBestPractices',
AWS_CLOUDFORMATION_ISSUES = 'AWSCloudFormationIssues',
CODE_INCONSISTENCIES = 'CodeInconsistencies',
CODE_MAINTENANCE_ISSUES = 'CodeMaintenanceIssues',
CONCURRENCY_ISSUES = 'ConcurrencyIssues',
DUPLICATE_CODE = 'DuplicateCode',
INPUT_VALIDATIONS = 'InputValidations',
JAVA_BEST_PRACTICES = 'JavaBestPractices',
PYTHON_BEST_PRACTICES = 'PythonBestPractices',
RESOURCE_LEAKS = 'ResourceLeaks',
SECURITY_ISSUES = 'SecurityIssues',

}
export class CodeGuruReviewFilter {

// Limit which recommendation categories to include
recommendationCategories!: CodeGuruReviewRecommendationCategory[];

// Fail if more that this # of lines of code were suppressed aws-codeguru-reviewer.yml
maxSuppressedLinesOfCodeCount?: number;

// Fail if more than this # of CRITICAL recommendations were found
maxCriticalRecommendations?: number;

// Fail if more than this # of HIGH recommendations were found
maxHighRecommendations?: number;

// Fail if more than this # of MEDIUM recommendations were found
maxMediumRecommendations?: number;

// Fail if more than this # of INFO recommendations were found
maxInfoRecommendations?: number;

// Fail if more than this # of LOW recommendations were found
maxLowRecommendations?: number;

}

AWS CDK Pipeline

- 30/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://aws.amazon.com/codeguru/
https://github.com/cdklabs/cdk-nag

import { App, Aspects } from 'aws-cdk-lib';
import { Annotations, Match, Template } from 'aws-cdk-lib/assertions';
import { SynthesisMessage } from 'aws-cdk-lib/cx-api';
import { AwsSolutionsChecks, NagSuppressions } from 'cdk-nag';
import { DeploymentStack } from '../src/deployment';

function synthesisMessageToString(sm: SynthesisMessage): string {
return `${sm.entry.data} [${sm.id}]`;

}
expect.addSnapshotSerializer({

test: (val) => typeof val === 'string' && val.match(/^dummy.dkr.ecr.us-east.1/) !== null,
serialize: () => '"dummy-ecr-image"',

});
expect.addSnapshotSerializer({

test: (val) => typeof val === 'string' && val.match(/^[a-f0-9]+\.zip$/) !== null,
serialize: () => '"code.zip"',

});

describe('cdk-nag', () => {
let stack: DeploymentStack;
let app: App;

beforeAll(() => {
const appName = 'fruit-api';
const workloadName = 'food';
const environmentName = 'unit-test';
app = new App({ context: { appName, environmentName, workloadName } });
stack = new DeploymentStack(app, 'TestStack', {

env: {
account: 'dummy',
region: 'us-east-1',

},
});
Aspects.of(stack).add(new AwsSolutionsChecks());

// Suppress CDK-NAG for TaskDefinition role and ecr:GetAuthorizationToken permission
NagSuppressions.addResourceSuppressionsByPath(

stack,
`/${stack.stackName}/Api/TaskDef/ExecutionRole/DefaultPolicy/Resource`,
[{ id: 'AwsSolutions-IAM5', reason: 'Allow ecr:GetAuthorizationToken', appliesTo: ['Resource::*'] }],

);

// Suppress CDK-NAG for secret rotation
NagSuppressions.addResourceSuppressionsByPath(

stack,
`/${stack.stackName}/AuroraSecret/Resource`,
[{ id: 'AwsSolutions-SMG4', reason: 'Dont require secret rotation' }],

);

// Suppress CDK-NAG for RDS Serverless
NagSuppressions.addResourceSuppressionsByPath(

stack,
`/${stack.stackName}/AuroraCluster/Resource`,
[

{ id: 'AwsSolutions-RDS6', reason: 'IAM authentication not supported on Serverless v1' },
{ id: 'AwsSolutions-RDS10', reason: 'Disable delete protection to simplify cleanup of Reference Implementation' },
{ id: 'AwsSolutions-RDS11', reason: 'Custom port not supported on Serverless v1' },
{ id: 'AwsSolutions-RDS14', reason: 'Backtrack not supported on Serverless v1' },
{ id: 'AwsSolutions-RDS16', reason: 'CloudWatch Log Export not supported on Serverless v1' },

],
);

NagSuppressions.addResourceSuppressionsByPath(stack, [
`/${stack.stackName}/Api/DeploymentGroup/Deployment/DeploymentProvider/framework-onEvent`,
`/${stack.stackName}/Api/DeploymentGroup/Deployment/DeploymentProvider/framework-isComplete`,
`/${stack.stackName}/Api/DeploymentGroup/Deployment/DeploymentProvider/framework-onTimeout`,
`/${stack.stackName}/Api/DeploymentGroup/Deployment/DeploymentProvider/waiter-state-machine`,

], [
{ id: 'AwsSolutions-IAM5', reason: 'Unrelated to construct under test' },
{ id: 'AwsSolutions-L1', reason: 'Unrelated to construct under test' },
{ id: 'AwsSolutions-SF1', reason: 'Unrelated to construct under test' },
{ id: 'AwsSolutions-SF2', reason: 'Unrelated to construct under test' },

], true);

// Ignore findings from access log bucket
NagSuppressions.addResourceSuppressionsByPath(stack, [

`/${stack.stackName}/Api/AccessLogBucket`,
], [

{ id: 'AwsSolutions-S1', reason: 'Dont need access logs for access log bucket' },
{ id: 'AwsSolutions-IAM5', reason: 'Allow resource:*', appliesTo: ['Resource::*'] },

]);

NagSuppressions.addResourceSuppressionsByPath(stack, [
`/${stack.stackName}/Api/Canary/ServiceRole`,

], [{ id: 'AwsSolutions-IAM5', reason: 'Allow resource:*' }]);

NagSuppressions.addResourceSuppressionsByPath(stack, [
`/${stack.stackName}/Api/CanaryArtifactsBucket`,

], [{ id: 'AwsSolutions-S1', reason: 'Dont need access logs for canary bucket' }]);

NagSuppressions.addResourceSuppressionsByPath(stack, [
`/${stack.stackName}/Api/DeploymentGroup/ServiceRole`,

], [
{ id: 'AwsSolutions-IAM4', reason: 'Allow AWSCodeDeployRoleForECS policy', appliesTo: ['Policy::arn:<AWS::Partition>:iam::aws:policy/

AWSCodeDeployRoleForECS'] },
]);

NagSuppressions.addResourceSuppressionsByPath(stack, [
`/${stack.stackName}/Api/DeploymentGroup/Deployment`,

AWS CDK Pipeline

- 31/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

], [
{

id: 'AwsSolutions-IAM4',
reason: 'Allow AWSLambdaBasicExecutionRole policy',
appliesTo: ['Policy::arn:<AWS::Partition>:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole'],

},
], true);

NagSuppressions.addResourceSuppressionsByPath(stack, [
`/${stack.stackName}/Api/TaskDef`,

], [
{

id: 'AwsSolutions-ECS2',
reason: 'Allow environment variables for configuration of values that are not confidential',

},
]);

NagSuppressions.addResourceSuppressionsByPath(stack, [
`/${stack.stackName}/Api/LB/SecurityGroup`,

], [
{

id: 'AwsSolutions-EC23',
reason: 'Allow public inbound access on ELB',

},
]);

});

test('Snapshot', () => {
const template = Template.fromStack(stack);
expect(template.toJSON()).toMatchSnapshot();

});

test('cdk-nag AwsSolutions Pack errors', () => {
const errors = Annotations.fromStack(stack).findError(

'*',
Match.stringLikeRegexp('AwsSolutions-.*'),

).map(synthesisMessageToString);
expect(errors).toHaveLength(0);

});

test('cdk-nag AwsSolutions Pack warnings', () => {
const warnings = Annotations.fromStack(stack).findWarning(

'*',
Match.stringLikeRegexp('AwsSolutions-.*'),

).map(synthesisMessageToString);
expect(warnings).toHaveLength(0);

});
});

describe('Deployment without AppConfig', () => {
let stack: DeploymentStack;
let app: App;

beforeAll(() => {
const appName = 'fruit-api';
const environmentName = 'unit-test';
app = new App({ context: { appName, environmentName } });
stack = new DeploymentStack(app, 'TestStack', {

env: {
account: 'dummy',
region: 'us-east-1',

},
});

});

test('Snapshot', () => {
const template = Template.fromStack(stack);
expect(template.toJSON()).toMatchSnapshot();

});
test('taskdef', () => {

const template = Template.fromStack(stack);
template.hasResourceProperties('AWS::ECS::TaskDefinition', {

ContainerDefinitions: [
{

Environment: [{
Name: 'SPRING_DATASOURCE_URL',

}, {
Name: 'APPCONFIG_AGENT_APPLICATION',

}, {
Name: 'APPCONFIG_AGENT_ENVIRONMENT',
Value: 'unit-test',

}, {
Name: 'APPCONFIG_AGENT_ENABLED',
Value: 'false',

}],
},

],
});

});
});

describe('Deployment with AppConfig', () => {
let stack: DeploymentStack;
let app: App;

beforeAll(() => {
const appName = 'fruit-api';
const workloadName = 'food';
const environmentName = 'unit-test';
app = new App({ context: { appName, environmentName, workloadName } });

AWS CDK Pipeline

- 32/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The same CDK construct that was created for Code Quality above is also used for secrets detection with Amazon CodeGuru.

The same CDK construct that was created for Code Quality above is also used for SAST with Amazon CodeGuru.

stack = new DeploymentStack(app, 'TestStack', {
appConfigRoleArn: 'dummy-role-arn',
env: {

account: 'dummy',
region: 'us-east-1',

},
});

});

test('Snapshot', () => {
const template = Template.fromStack(stack);
expect(template.toJSON()).toMatchSnapshot();

});
test('taskdef', () => {

const template = Template.fromStack(stack);
template.hasResourceProperties('AWS::ECS::TaskDefinition', {

ContainerDefinitions: [
{

Environment: [{
Name: 'SPRING_DATASOURCE_URL',

}, {
Name: 'APPCONFIG_AGENT_APPLICATION',
Value: 'food',

}, {
Name: 'APPCONFIG_AGENT_ENVIRONMENT',
Value: 'unit-test',

}, {
Name: 'APPCONFIG_AGENT_ENABLED',
Value: 'true',

}],
},
{

Environment: [{
Name: 'SERVICE_REGION',
Value: 'us-east-1',

}, {
Name: 'ROLE_ARN',
Value: 'dummy-role-arn',

}, {
Name: 'ROLE_SESSION_NAME',

}, {
Name: 'LOG_LEVEL',
Value: 'info',

}],
},

],
});

});
});

Secrets Detection

Static Application Security Testing (SAST)

AWS CDK Pipeline

- 33/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://aws.amazon.com/codeguru/
https://aws.amazon.com/codeguru/

AWS Cloud Development Kit handles the packaging and storing of assets during the Synth action and Assets stage. The Synth action

generates the CloudFormation templates to be deployed into the subsequent environments along with staging up the files necessary

to create a docker image. The Assets stage then performs the docker build step to create a new image and push the image to

Amazon ECR repositories in each environment account.

Package and Store Artifact(s)

AWS CDK Pipeline

- 34/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

https://aws.amazon.com/cdk/
https://aws.amazon.com/ecr/

AWS CDK Pipeline

- 35/35 - Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

	Deployment Pipeline Reference Architecture
	1. Overview
	Application
	Compute Image
	Account Fleet Management
	Dynamic Configuration
	Architecture
	Business Outcomes
	Definitions
	Component
	Workload
	Environment

	2. Application Pipeline
	Architecture
	Local Development
	Source
	Build
	Test (Beta)
	Test (Gamma)
	Prod

	Reference Implementations
	AWS CDK Pipeline
	Local Development
	Source
	Build

