
AWS Secure Environment
Accelerator

Amazon Web Services

Amazon Web Services

None

Table of contents

61. 1. AWS Secure Environment Accelerator

61.1 1.1. Overview

61.2 1.2. What specifically does the Accelerator deploy and manage?

71.2.1 1.2.1. Creates AWS Account

71.2.2 1.2.2. Creates Networking

71.2.3 1.2.3. Cross-Account Object Sharing

81.2.4 1.2.4. Identity

81.2.5 1.2.5. Cloud Security Services

81.2.6 1.2.6. Other Security Capabilities

81.2.7 1.2.7. Centralized Logging and Alerting

91.3 1.3. Relationship with AWS Landing Zone Solution (ALZ)

91.4 1.4. Relationship with AWS Control Tower

101.5 1.5. Accelerator Installation Process (Summary)

112. Installation & Upgrades

112.1 Accelerator Installation and Upgrades

122.2 Installation

122.2.1 1. Accelerator Installation Guide

312.2.2 1. Accelerator Sample Configurations and Customization

392.2.3 1. State Machine Behavior and Inputs

422.2.4 1. Multi-file Accelerator Config file and YAML Support Details

462.2.5 1. Existing Organizations / Accounts

482.2.6 1. How to migrate an AWS Landing Zone (ALZ) account "as is" into an AWS Secure Environment Accelerator (ASEA)

532.3 Upgrades

532.3.1 1. Accelerator Upgrade Guide

562.3.2 1. Accelerator v1.5.x Custom Upgrade Instructions

612.4 Functionality

622.4.1 Accelerator Service List

652.4.2 1. Accelerator Pricing

732.4.3 AWS Secure Environment Accelerator Deployment Capabilities

792.4.4 1. Accelerator Central Logging Implementation and File Structures

842.4.5 Object Naming

883. 1. Accelerator Basic Operation and Frequently asked Questions

883.1 1.1. Operational Activities

1013.2 1.2. Existing Accounts / Organizations

1033.3 1.3. End User Environment

Table of contents

- 2/230 -

1053.4 1.4. Upgrades

1063.5 1.5. Support Concerns

1093.6 1.6. Deployed Functionality

1253.7 1.7. Network Architecture

1294. Operations & Troubleshooting

1294.1 Accelerator Operations & Troubleshooting Guide

1304.2 1. System Overview

1304.2.1 1.1. Overview

1324.2.2 1.2. Installer Stack

1374.2.3 1.3. Initial Setup Stack

1504.3 1. Troubleshooting

1504.3.1 1.1. Overview

1504.3.2 1.2. Components

1594.3.3 1.3. Examples

1634.4 1. Common Tasks

1634.4.1 1.1. Restart the State Machine

1634.4.2 1.2. Switch To a Managed Account

1665. Developer Guide

1665.1 Accelerator Developer Guide

1675.2 1. Development Guide

1675.2.1 1.1. Overview

1675.2.2 1.2. Project Structure

1675.2.3 1.3. Installer Stack

1685.2.4 1.4. Initial Setup Stack

1695.2.5 1.5. Phase Steps and Phase Stacks

1705.2.6 1.6. Store outputs to SSM Parameter Store

1715.2.7 1.7. Libraries and Tools

1765.2.8 1.8. Workarounds

1765.2.9 1.9. Local Development

1795.2.10 1.10. Testing

1815.3 1. Technology Stack

1815.3.1 1.1. Overview

1815.3.2 1.2. TypeScript and NodeJS

1815.3.3 1.3. CloudFormation

1815.3.4 1.4. CDK

1825.4 1. Best Practices

1825.4.1 1.1. TypeScript and NodeJS

1825.4.2 1.2. CloudFormation

Table of contents

- 3/230 -

1835.4.3 1.3. CDK

1875.5 1. How to Contribute

1875.5.1 1.1. General

1875.5.2 1.2. Adding New Functionality?

1875.5.3 1.3. Create a CDK Lambda Function with Lambda Runtime Code

1875.5.4 1.4. Create a Custom Resource

1885.5.5 1.5. Run All Unit Tests

1885.5.6 1.6. Accept Unit Test Snapshot Changes

1885.5.7 1.7. Validate Code with Prettier

1885.5.8 1.8. Format Code with Prettier

1885.5.9 1.9. Validate Code with tslint

1895.6 1. AWS Internal - Accelerator Release Process

1895.6.1 1.1. Creating a new Accelerator Code Release

1906. Sample Sensitive Architecture

1906.1 Accelerator Sample Sensitive Architecture

1916.2 1. AWS Secure Environment Accelerator Reference Architecture

1916.2.1 1.1. Overview

1916.2.2 1.2. Introduction

1966.3 1. Account Structure

1966.3.1 1.1. Overview

1966.3.2 1.2. Organization structure

1976.3.3 1.3. Organizational Units

2006.3.4 1.4. Mandatory Accounts

2036.3.5 1.5. Functional Accounts

2036.3.6 1.6. Account Level Security Settings

2036.3.7 1.7. Private Marketplace

2056.4 1. Authorization and Authentication

2056.4.1 1.1. Overview

2056.4.2 1.2. Relationship to the Organization Management (root) AWS Account

2056.4.3 1.3. Break Glass Accounts

2066.4.4 1.4. Multi-Factor Authentication

2066.4.5 1.5. Control Plane Access via AWS SSO

2086.4.6 1.6. Root Authorization

2086.4.7 1.7. Service Roles

2086.4.8 1.8. Service Control Policies

2126.5 1. Logging and Monitoring

2126.5.1 1.1. Overview

2126.5.2 1.2. CloudTrail

Table of contents

- 4/230 -

2126.5.3 1.3. VPC Flow Logs

2126.5.4 1.4. GuardDuty

2126.5.5 1.5. Config

2136.5.6 1.6. CloudWatch Logs

2136.5.7 1.7. SecurityHub

2136.5.8 1.8. Systems Manager Session Manager

2136.5.9 1.9. Systems Manager Inventory

2136.5.10 1.10. Other Services

2146.6 1. Networking

2146.6.1 1.1. Overview

2166.6.2 1.2. Perimeter

2186.6.3 1.3. Shared Network

2256.7 1. Prescriptive Sensitive Sample Architecture Diagrams

2256.7.1 1.1. Shared VPC Architecture

2266.7.2 1.2. Spoke VPC Architecture

2266.7.3 1.3. VPC and Security Group Patterns

2286.7.4 1.4. Additional Perimeter Patterns

2307. Workshops

2307.1 Accelerator Workshops

2307.1.1 Accelerator Administrator Immersion Day

2307.1.2 Accelerator Workload/Application Team Immersion Day

Table of contents

- 5/230 -

1. 1. AWS Secure Environment Accelerator

1.1 1.1. Overview

The AWS Accelerator is a tool designed to help deploy and operate secure multi-account, multi-region AWS environments on an ongoing basis. The

power of the solution is the configuration file that drives the architecture deployed by the tool. This enables extensive flexibility and for the completely

automated deployment of a customized architecture within AWS without changing a single line of code.

While flexible, the AWS Accelerator is delivered with a sample configuration file which deploys an opinionated and prescriptive architecture designed

to help meet the security and operational requirements of many governments around the world. Tuning the parameters within the configuration file

allows for the deployment of customized architectures and enables the solution to help meet the multitude of requirements of a broad range of

governments and public sector organizations.

The installation of the provided prescriptive architecture is reasonably simple, deploying a customized architecture does require extensive

understanding of the AWS platform. The sample deployment specifically helps customers meet NIST 800-53 and/or CCCS Medium Cloud Control

Profile (formerly PBMM).

1.2 1.2. What specifically does the Accelerator deploy and manage?

A common misconception is that the AWS Secure Environment Accelerator only deploys security services, not true. The Accelerator is capable of

deploying a complete end-to-end hybrid enterprise multi-region cloud environment.

Additionally, while the Accelerator is initially responsible for deploying a prescribed architecture, it more importantly allows for organizations to

operate, evolve, and maintain their cloud architecture and security controls over time and as they grow, with minimal effort, often using native AWS

tools. While the Accelerator helps with the deployment of technical security controls, it’s important to understand that the Accelerator is only part of

your security and compliance effort. We encourage customers to work with their AWS account team, AWS Professional Services or an AWS Partner

to determine how to best meet the remainder of your compliance requirements.

1. 1. AWS Secure Environment Accelerator

- 6/230 -

The Accelerator is designed to enable customers to upgrade across Accelerator versions while maintaining a customer’s specific configuration and

customizations, and without the need for any coding expertise or for professional services. Customers have been able to seamlessly upgrade their

AWS multi-account environment from the very first Accelerator beta release to the latest release (across more than 50 releases), gaining the benefits

of bug fixes and enhancements while having the option to enable new features, without any loss of existing customization or functionality.

Specifically the accelerator deploys and manages the following functionality, both at initial accelerator deployment and as new accounts are created,

added, or onboarded in a completely automated but customizable manner:

1.2.1 1.2.1. Creates AWS Account

Core Accounts - as many or as few as your organization requires, using the naming you desire. These accounts are used to centralize core

capabilities across the organization and provide Control Panel like capabilities across the environment. Common core accounts include:

Shared Network

Operations

Perimeter

Log Archive

Security Tooling

Workload Accounts - automated concurrent mass account creation or use AWS organizations to scale one account at a time. These accounts are

used to host a customer's workloads and applications.

Scalable to 1000's of AWS accounts

Supports AWS Organizations nested OU's and importing existing AWS accounts

Performs 'account warming' to establish initial limits, when required

Automatically submits limit increases, when required (complies with initial limits until increased)

Leverages AWS Control Tower

1.2.2 1.2.2. Creates Networking

Transit Gateways and TGW route tables (incl. inter-region TGW peering)

Centralized and/or Local (bespoke) VPC's

Subnets, Route tables, NACLs, Security groups, NATGWs, IGWs, VGWs, CGWs

NEW Outpost, Local Zone and Wavelength support

VPC Endpoints (Gateway and Interface, Centralized or Local)

Route 53 Private and Public Zones, Resolver Rules and Endpoints, VPC Endpoint Overloaded Zones

All completely and individually customizable (per account, VPC, subnet, or OU)

Layout and customize your VPCs, subnets, CIDRs and connectivity the way you want

Static or Dynamic VPC and subnet CIDR assignments

Deletes default VPC's (worldwide)

AWS Network Firewall

1.2.3 1.2.3. Cross-Account Object Sharing

VPC and Subnet sharing, including account level re-tagging (Per account security group 'replication')

VPC attachments and peering (local and cross-account)

Zone sharing and VPC associations

Managed Active Directory sharing, including R53 DNS resolver rule creation/sharing

Automated TGW inter-region peering

Populate Parameter Store with all user objects to be used by customers' IaC

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.2.1 1.2.1. Creates AWS Account

- 7/230 -

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_ous.html

Deploy and share SSM documents (4 provided out-of-box, ELB Logging, S3 Encryption, Instance Profile remediation, Role remediation)

customer can provide their own SSM documents for automated deployment and sharing

1.2.4 1.2.4. Identity

Creates Directory services (Managed Active Directory and Active Directory Connectors)

Creates Windows admin bastion host auto-scaling group

Set Windows domain password policies

Set IAM account password policies

Creates Windows domain users and groups (initial installation only)

Creates IAM Policies, Roles, Users, and Groups

Fully integrates with and leverages AWS SSO for centralized and federated login

1.2.5 1.2.5. Cloud Security Services

Enables and configures the following AWS services, worldwide w/central designated admin account:

GuardDuty w/S3 protection

Security Hub (Enables designated security standards, and disables individual controls)

Firewall Manager

CloudTrail w/Insights and S3 data plane logging

Config Recorders/Aggregator

Conformance Packs and Config rules (95 out-of-box NIST 800-53 rules, 2 custom rules, customizable per OU)

Macie

IAM Access Analyzer

CloudWatch access from central designated admin account (and setting Log group retentions)

1.2.6 1.2.6. Other Security Capabilities

Creates, deploys and applies Service Control Policies

Creates Customer Managed KMS Keys (SSM, EBS, S3), EC2 key pairs, and secrets

Enables account level default EBS encryption and S3 Block Public Access

Configures Systems Manager Session Manager w/KMS encryption and centralized logging

Configures Systems Manager Inventory w/centralized logging

Creates and configures AWS budgets (customizable per OU and per account)

Imports or requests certificates into AWS Certificate Manager

Deploys both perimeter and account level ALB's w/Lambda health checks, certificates and TLS policies

Deploys & configures 3rd party firewall clusters and management instances (leverages marketplace)

Gateway Load Balancer w/auto-scaling and VPN IPSec BGP ECMP deployment options

Protects Accelerator deployed and managed objects

Sets Up SNS Alerting topics (High, Medium, Low, Blackhole priorities)

Deploys CloudWatch Log Metrics and Alarms

Deploys customer provided custom config rules (2 provided out-of-box, no EC2 Instance Profile/Permissions)

1.2.7 1.2.7. Centralized Logging and Alerting

Deploys an rsyslog auto-scaling cluster behind a NLB, all syslogs forwarded to CloudWatch Logs

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.2.4 1.2.4. Identity

- 8/230 -

Centralized access to "Cloud Security Service" Consoles from designated AWS account

Centralizes logging to a single centralized S3 bucket (enables, configures and centralizes)

VPC Flow logs w/Enhanced metadata fields (also sent to CWL)

Organizational Cost and Usage Reports

CloudTrail Logs including S3 Data Plane Logs (also sent to CWL)

All CloudWatch Logs (includes rsyslog logs)

Config History and Snapshots

Route 53 Public Zone Logs (also sent to CWL)

GuardDuty Findings

Macie Discovery results

ALB Logs

SSM Inventory

Security Hub findings

SSM Session Logs (also sent to CWL)

Resolver Query Logs (also sent to CWL)

Email alerting for CloudTrail Metric Alarms, Firewall Manager Events, Security Hub Findings incl. GuardDuty Findings

NEW Optionally collect Organization and ASEA configuration and metadata in a new restricted log archive bucket

1.3 1.3. Relationship with AWS Landing Zone Solution (ALZ)

The ALZ was an AWS Solution designed to deploy a multi-account AWS architecture for customers based on best practices and lessons learned from

some of AWS' largest customers. The AWS Accelerator draws on design patterns from the Landing Zone, and re-uses several concepts and

nomenclature, but it is not directly derived from it, nor does it leverage any code from the ALZ. The Accelerator is a standalone solution with no

dependence on ALZ.

1.4 1.4. Relationship with AWS Control Tower

The AWS Secure Environment Accelerator now leverages AWS Control Tower!

With the release of v1.5.0, the AWS Accelerator adds the capability to be deployed on top of AWS Control Tower. Customers get the benefits of the

fully managed capabilities of AWS Control Tower combined with the power and flexibility of the Accelerators Networking and Security orchestration.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.3 1.3. Relationship with AWS Landing Zone Solution (ALZ)

- 9/230 -

1.5 1.5. Accelerator Installation Process (Summary)

This summarizes the installation process, the full installation document can be found in the documentation section below.

Create a config.json (or config.yaml) file to represent your organizations requirements (several samples provided)

Create a Secrets Manager Secret which contains a GitHub token that provides access to the Accelerator code repository

Create a unique S3 input bucket in the management account of the region you wish to deploy the solution and place your config.json and any

additional custom config files in the bucket

Download and execute the latest release installer CloudFormation template in your management accounts preferred 'primary' / 'home' region

Wait for:

CloudFormation to deploy and start the Code Pipeline (~5 mins)

Code Pipeline to download the Accelerator codebase and install the Accelerator State Machine (~10 mins)

The Accelerator State Machine to finish execution (~1.25 hrs Standalone version, ~2.25 hrs Control Tower Version)

Perform required one-time post installation activities (configure AWS SSO, set firewall passwords, etc.)

On an ongoing basis:

Use AWS Organizations to create new AWS accounts, which will automatically be guardrailed by the Accelerator

Update the config file in CodeCommit and run the Accelerator State Machine to:

deploy, configure and guardrail multiple accounts at the same time (~25 min Standalone, ~50 min/account Control Tower)

change Accelerator configuration settings (~25 min)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.5 1.5. Accelerator Installation Process (Summary)

- 10/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/releases

2. Installation & Upgrades

2.1 Accelerator Installation and Upgrades

This section contains information on the installation and upgrade procedures for ASEA.

Installation

Installation Guide

Sample Configurations and Customization

State Machine Behavior

Splitting the Config File

Considerations with Existing Organizations

Importing ALZ Accounts

Open Releases

Upgrades

Upgrade Guide

v1.5.0 Upgrade Instructions

Functionality

Services

Pricing

Architecture Diagrams

Key Account & Capability Overview

Centralized Logging Details

Accelerator Object Naming

Open Roadmap

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2. Installation & Upgrades

- 11/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/releases
https://github.com/aws-samples/aws-secure-environment-accelerator/projects/1

2.2 Installation

2.2.1 1. Accelerator Installation Guide

1.1. Overview

We encourage customers installing the Accelerator to get the support of their local AWS account team (SA, TAM, CSM, ProServe) to assist

with the installation of the Accelerator, as the Accelerator leverages, deploys, or orchestrates over 50 different AWS services.

Users are strongly encouraged to also read the Accelerator Operations/Troubleshooting Guide before installation and the FAQ while waiting for the

installation to complete. The Operations/Troubleshooting Guide provides details as to what is being performed at each stage of the installation

process, including detailed troubleshooting guidance.

These installation instructions assume one of the prescribed architectures is being deployed.

1.2. Prerequisites

1.2.1. GENERAL

Management or root AWS Organization account (the AWS Accelerator cannot be deployed in an AWS sub-account)

No additional AWS accounts need to be pre-created before Accelerator installation

If required, a limit increase to support your desired number of new AWS sub-accounts (default limit is 10 sub-accounts)

recent changes to new AWS account limits are causing accelerator installation failures, please work with your local account team to

increase your limits

Valid Accelerator configuration file, updated to reflect your requirements (see below)

Determine your primary or Accelerator control or home region, this is the AWS region in which you will most often operate

Government of Canada customers are still required to do a standalone installation at this time, please request standalone installation instructions

from your Account SA or TAM

The Accelerator can be installed into existing AWS Organizations - see caveats and notes here

Existing AWS Landing Zone Solution (ALZ) customers are required to remove their ALZ deployment before deploying the Accelerator. Scripts are

available to assist with this process.

Changes to the Accelerator codebase are strongly discouraged unless they are contributed and accepted back to the solution. Code customization

will block the ability to upgrade to the latest release and upgrades are encouraged to be done between quarterly to semi-annually. The solution

was designed to be extremely customizable without changing code, existing customers following these guidelines have been able to upgrade

across more than 50 Accelerator releases, while maintaining their customizations and gaining the latest bug fixes, features and enhancements

without any developer or professional services based support. Please see this FAQ for more details.

1.3. Production Deployment Planning

1.3.1. GENERAL

For any deployment of the Accelerator which is intended to be used for production workloads, you must evaluate all these decisions

carefully. Failure to understand these choices could cause challenges down the road. If this is a "test" or "internal" deployment of the

Accelerator which will not be used for production workloads, you can leave the default config values.

Config file schema documentation (Draft)

•

•

•

•

•

•

•

•

•

•

2.2 Installation

- 12/230 -

https://aws-samples.github.io/aws-secure-environment-accelerator/schema/en/index.html

1.3.2. OU STRUCTURE PLANNING

Plan your OU and core account structure carefully. By default, we suggest: Security, Infrastructure, Central, Sandbox, Dev, Test, Prod .

The Security OU will contain the Security account, the Log Archive account, and the Organization Management account.

The Infrastructure OU will hold the remainder of the accounts shared or utilized by the rest of the organization (Shared Network , Perimeter ,

and Operations).

The remainder of the OUs correspond with major permission shifts in the SDLC cycle and NOT every stage an organization has in their SDLC

cycle (i.e. QA or pre-prod would be included in one of the other OUs).

The Central OU is used to hold accounts with workloads shared across Dev, Test, and Prod environments like centralized CI/CD tooling.

The v1.5.0+ releases align the Accelerator OU and account structure with AWS multi-account guidance, splitting the core OU into the Security

and Infrastructure OUs.

Note: While OUs can be renamed or additional OUs added at a later point in time, deployed AWS accounts CANNOT be moved between top-level

OUs (guardrail violation), nor can top-level OUs easily be deleted (requires deleting all AWS accounts from within the OU first).

1.3.3. NETWORK CONFIGURATION PLANNING

If deploying the prescriptive architecture using the Full or Lite sample config files, you will need the following network constructs:

Six (6) RFC1918 Class B address blocks (CIDR's) which do not conflict with your on-premise networks (a single /13 block works well)

VPC CIDR blocks cannot be changed after installation, this is simply the way the AWS platform works, given everything is built on top of them. Carefully

consider your address block selection.

one block for each OU, except Sandbox which is not routable (Sandbox OU will use a 7th non-routed address block)

the "core" Class B range will be split to support the Endpoint VPC and Perimeter VPC (with extra addresses remaining for future use)

Given a shared VPC architecture is leveraged (prevents stranded islands of CIDR blocks and reduces networking costs), we have assigned a class B

address block to each VPC to future proof the deployment. Smaller customers can successfully deploy with a half class B CIDR block per shared VPC.

Two (2) RFC6598 /23 address blocks (Government of Canada (GC) requirement only)

Used for AWS Managed Active Directory (MAD) deployment and perimeter underlay network

non-GC customers can replace the RFC6598 address space with the extra unused addresses from the above RFC1918 CIDR range above (the App2

subnets in the Central VPC and the Perimeter VPC address space)

BGP ASN's for network routing, one for each of:

Transit Gateway (one unique ASN per TGW, multi-region example requires a second ASN)

IPSec VPN Firewall Cluster (if deployed)

VGW for Direct Connect connectivity (only shown in the config.multi-region-example.json)

For example: the Control Tower with Network Firewall example config requires a single BGP ASN for the TGW, the IPSec VPN example requires two

BGP ASN's, and the multi-region example requires five unique BGP ASN's.

NOTE: Prior to v1.5.0 CIDR ranges were assigned to each VPC and subnet throughout the config file. This required customers to perform extensive

updates across the config file when needing to move to specific IP ranges compatible with a customer's existing on-premise networks.

While this is still supported for those wanting to control exactly what address is used on every subnet, the solution has added support for dynamic

CIDR assignments and the sample config files have been updated to reflect. New installs will have CIDR's pulled from CIDR pools, defined in the

global-options section of the config file with state maintained in DynamoDB.

The v1.5.0 custom upgrade guide will provides details on the upgrade process and requirements to migrate to the new CIDR assignment system, if

desired. A script was created to assist with this migration.

•

•

•

•

•

1.

•

•

•

•

2.

•

•

3.

•

•

•

•

2.2.1 1. Accelerator Installation Guide

- 13/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/Custom-Scripts/Update-Scripts/v1.3.8_to_v1.5.0

1.3.4. DNS, DOMAIN NAME, TLS CERTIFICATE PLANNING

If deploying the prescriptive architecture, you must decide on:

A unique Windows domain name (organizationaws / organization.aws , organizationcloud / organization.cloud , etc.). Given this is designed as

the primary identity store and used to domain join all cloud hosted workloads, changing this in future is difficult. Pick a Windows domain name that does

NOT conflict with your on-premise AD domains, ensuring the naming convention conforms to your organizations domain naming standards to ensure

you can eventually create a domain trust between the MAD and on-premise domains/forests

DNS Domain names and DNS server IP's for on-premise private DNS zones requiring cloud resolution (can be added in future)

DNS Domain for a cloud hosted public zone "public": ["organization.cloud-nuage.canada.ca"] (can be added in future)

DNS Domain for a cloud hosted private zone "private": ["organization.cloud-nuage.gc.ca"] (can be added in future)

Wildcard TLS certificate for each of the 2 previous zones (can be added/changed in future)

1.3.5. EMAIL ADDRESS PLANNING

While you require a minimum of 6 unique email addresses (1 per sub-account being created), we recommend at least 20 unique email ALIASES

associated with a single mailbox, never used before to open AWS accounts, such that you do not need to request new email aliases every time you

need to create a new AWS account and they can all be monitored via a single mailbox. These email addresses can never have been used to previously

open an AWS account.

You additionally require email addresses for the following additional purposes (these can be existing monitored mailboxes and do not need to be

unique):

Accelerator execution (state machine) notification events (1 address)

High, Medium and Low security alerts (3 addresses if you wish to segregate alerts)

Budget notifications

1.3.6. CENTRALIZED INGRESS/EGRESS FIREWALLS

As of v1.5.0 the Accelerator offers multiple automated firewall deployment options:

a) AWS Network Firewall (native AWS Cloud service)

b) 3rd party firewalls interconnected to the cloud tenancy via IPSec VPN (Active/Active using BGP + ECMP)

Defined in the config file under deployments w/TGW VPN attachments

this was the only automated option prior to v1.5.0

a sample Fortinet Fortigate configuration is provided (both PAYGO and BYOL supported)

For Fortinet BYOL, requires minimum 2 valid license files (evaluation licenses adequate) (can be added in future)

c) 3rd party firewalls interconnected to the cloud tenancy via Gateway Load Balancer (GWLB) in an auto-scaling group

Defined in the config file under both deployments and load balancers

a sample Checkpoint CloudGuard configuration is provided (both PAYGO and BYOL supported)

d) Customer gateway (CGW) creation, to enable connectivity to on-premises firewalls or manually deployed cloud firewalls

Defined in the config file under deployments w/TGW VPN attachments (but without an AMI or VPC association)

Examples of each of the firewall options have been included as variants of the Lite config file example.

Note: While we only provide a single example for each 3rd party implementation today, the implementations are generic and should be usable by any

3rd party firewall vendor, assuming they support the required features and protocols. The two examples were driven by customer demand and heavy

lifting by the 3rd party vendor. We look forward to additional vendors developing and contributing additional sample configurations. For new 3rd party

integrations, we encourage the use of the GWLB approach.

1.

2.

3.

4.

5.

1.

2.

•

•

•

- Defined in the config file as part of a VPC

•

•

•

•

•

•

•

2.2.1 1. Accelerator Installation Guide

- 14/230 -

1.3.7. OTHER

We recommend installing with the default Accelerator Name (ASEA) and Accelerator Prefix (ASEA-), but allow customization. Prior to v1.5.0 the defaults

were (PBMM) and (PBMMAccel-) respectively.

the Accelerator name and prefix CANNOT be changed after the initial installation;

the Accelerator prefix including the mandatory dash cannot be longer than 10 characters.

New installations, which now leverage Control Tower, require the organization-admin-role be set to AWSControlTowerExecution . Existing

standalone installations will continue to utilize their existing role name for the organization-admin-role , typically OrganizationAccountAccessRole ,

as this role is used by AWS Organizations by default when no role name is specified while creating AWS accounts through the AWS console.

the Accelerator leverages this role name to create all new accounts in the organization;

this role name, as defined in the config file, MUST be utilized when manually creating all new sub-accounts in the Organization;

existing installs wishing to change the role name are required to first deploy a new role with a trust to the root account, in all accounts in the

organization.

1.

•

•

2.

•

•

•

2.2.1 1. Accelerator Installation Guide

- 15/230 -

1.4. Accelerator Pre-Install Steps

1.4.1. GENERAL

Before installing, you must first:

2.2.1 1. Accelerator Installation Guide

- 16/230 -

Login to the Organization Management (root) AWS account with AdministratorAccess .

Set the region to your desired home region (i.e. ca-central-1)

Install AWS Control Tower:

Government of Canada customers are required to skip this step

OU and account names can ONLY be customized during initial installation. These values MUST match with the values supplied in the Accelerator config

file.

Go to the AWS Control Tower console and click Set up landing zone

Select your home region (i.e. ca-central-1) - the Accelerator home region must match the Control Tower home region

Leave the Region deny setting set to Not enabled - the Accelerator needs a customized region deny policy

Select all regions for Additional AWS Regions for governance , click Next

The Control Tower and Accelerator regions MUST be properly aligned

If a region is not governed by Control Tower, it must NOT be listed in control-tower-supported-regions

To manage a region requires the region:

be enabled in Control Tower (if supported)

added to the config file control-tower-supported-regions list (if supported)

added to the config file supported-regions list (even if not supported by Control Tower, as the Accelerator can manage regions not yet supported by

Control Tower, but only when NOT listed in control-tower-supported-regions)

While we highly recommend guardrail deployment for all AWS enabled by default regions, at minimum

the home region MUST be enabled in Control Tower and must be listed in control-tower-supported-regions

both the home-region and ${GBL*REGION} must be listed in supported-regions

For the Foundational OU , leave the default value Security

For the Additional OU provide the value Infrastructure , click Next

Enter the email addresses for your Log Archive and Audit accounts, change the Audit account name to Security , click Next - OU and account

names can ONLY be customized during initial installation. OU names, account names and email addresses _must* match identically with the values

supplied in the Accelerator config file.

Select Enabled for AWS CloudTrail configuration (if not selected), click Next

Click Set up landing zone and wait ~60 minutes for the Control Tower installation to complete

Select Add or register organizational units , Click Add an OU

Type Dev , click Add , wait until the OU is finished provisioning (or it will error)

Repeat step 9 for each OU (i.e. Test , Prod , Central , Sandbox)

Select Account factory , Edit, Subnets: 0, Deselect all regions, click Save

In AWS Organizations, move the Management account from the root OU into the Security OU

Verify:

AWS Organizations is enabled in All features mode

if required, navigate to AWS Organizations, click Create Organization , Create Organization

Service Control Policies are enabled

if required, in Organizations, select Policies , Service control policies , Enable service control policies

Verify the Organization Management (root) account email address

In AWS Organizations, Settings, "Send Verification Request"

Once it arrives, complete the validation by clicking the validation link in the email

1.

2.

3.

•

•

a.

b.

c.

d.

•

•

•

•

•

•

•

•

•

e.

f.

g.

h.

i.

j.

k.

l.

m.

n.

4.

a.

•

b.

•

5.

•

•

2.2.1 1. Accelerator Installation Guide

- 17/230 -

https://aws.amazon.com/blogs/security/aws-organizations-now-requires-email-address-verification/

Create a new KMS key to encrypt your source configuration bucket (you can use an existing key)

AWS Key Management Service, Customer Managed Keys, Create Key, Symmetric, and then provide a key name (ASEA-Source-Bucket-Key), Next

Select a key administrator (Admin Role or Group for the Organization Management account), Next

Select key users (Admin Role or Group for the Organization Management account), Next

Validate an entry exists to "Enable IAM User Permissions" (critical step if using an existing key)

"arn:aws:iam::123456789012:root" , where 123456789012 is your Organization Management account ID.

Click Finish

Select the new key, Select Key Rotation , Automatically rotate this CMK every year , click Save.

Enable "Cost Explorer" (My Account, Cost Explorer, Enable Cost Explorer)

With recent platform changes, Cost Explorer may now be auto-enabled (unable to confirm)

Enable "Receive Billing Alerts" (My Account, Billing Preferences, Receive Billing Alerts)

It is extremely important that all the account contact details be validated in the Organization Management (root) account before deploying any new

sub-accounts.

This information is copied to every new sub-account on creation.

Subsequent changes to this information require manually updating it in each sub-account.

Go to My Account and verify/update the information lists under both the Contact Information section and the Alternate Contacts section.

Please ESPECIALLY make sure the email addresses and Phone numbers are valid and regularly monitored. If we need to reach you due to suspicious

account activity, billing issues, or other urgent problems with your account - this is the information that is used. It is CRITICAL it is kept accurate and up

to date at all times.

1.4.2. CREATE GITHUB PERSONAL ACCESS TOKEN AND STORE IN SECRETS MANAGER

As of v1.5.0, the Accelerator offers deployment from either GitHub or CodeCommit:

GitHub (recommended)

You require a GitHub access token to access the code repository

Instructions on how to create a personal access token are located here.

Select the scope public_repo underneath the section repo: Full control over private repositories .

Store the personal access token in Secrets Manager as plain text. Name the secret accelerator/github-token (case sensitive).

Via AWS console

Store a new secret, and select Other type of secrets , Plaintext

Paste your secret with no formatting no leading or trailing spaces (i.e. completely remove the example text)

Select the key you created above (ASEA-Source-Bucket-Key),

Set the secret name to accelerator/github-token (case sensitive)

Select Disable rotation

CodeCommit (alternative option)

Multiple options exist for downloading the GitHub Accelerator codebase and pushing it into CodeCommit. As this option is only for advanced users,

detailed instructions are not provided.

In your AWS Organization Management account, open CodeCommit and create a new repository named aws-secure-environment-accelerator

Go to GitHub and download the repository Source code zip or tarball for the release you wish to deploy

Do NOT download the code off the main GitHub branch, this will leave you in a completely unsupported state (and with beta code)

Push the extracted codebase into the newly created CodeCommit repository, maintaining the file/folder hierarchy (ensuring that the root of the

repository on code commit looks the same as the root of the repository on github)

Set the default CodeCommit branch for the new repository to main

Create a branch following the Accelerator naming format for your release (i.e. release/v1.5.5)

6.

•

•

•

•

•

•

•

7.

•

8.

9.

•

•

•

•

1.

2.

3.

4.

•

•

•

•

•

•

1.

2.

•

3.

4.

5.

2.2.1 1. Accelerator Installation Guide

- 18/230 -

https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://github.com/aws-samples/aws-secure-environment-accelerator/releases

1.4.3. AWS INTERNAL (EMPLOYEE) ACCOUNTS ONLY

If deploying to an internal AWS employee account and installing the solution with a 3rd party firewall, you need to enable Private Marketplace (PMP)

before starting:

In the Organization Management account go here: https://aws.amazon.com/marketplace/privatemarketplace/create

Click Create a Private Marketplace , and wait for activation to complete

Go to the "Account Groups" sub-menu, click Create account group

Enter an Account Group Title (i.e. Default) and Add the Management (root) account number in Associate AWS account

Associate the default experience New Private Marketplace , then click Create account group and wait for it to create

Go to "Experiences" sub-menu, select New Private Marketplace

Select the "Settings" sub-tab, and click the Not Live slider to make it Live and wait for it to complete

Ensure the "Software requests" slider is set to Requests off and wait for it to complete

Change the name field (i.e. append -PMP) and change the color, so it is clear PMP is enabled for users, click Update

Go to the "Products" sub-tab, then select the All AWS Marketplace products nested sub-tab

Search Private Marketplace for the Fortinet or Checkpoint products and select

Fortinet FortiGate (BYOL) Next-Generation Firewall and

Fortinet FortiManager (BYOL) Centralized Security Management or

CloudGuard Network Security for Gateway Load Balancer - BYOL and

Check Point Security Management (BYOL)

Select "Add" in the top right

Due to PMP provisioning delays, this sometimes fails when attempted immediately following enablement of PMP or if adding each product individually -

retry after 20 minutes.

While not used in this account, you must now subscribe to the two subscriptions and accept the EULA for each product (you will need to do the same in

the perimeter account, once provisioned below)

To subscribe, select the "Approved products" tab

Click on the product you want to subscribe, in this case Fortinet FortiGate (BYOL) Next-Generation Firewall and

Fortinet FortiManager (BYOL Centralized Security Management or CloudGuard Network Security for Gateway Load Balancer - BYOL and

Check Point Security Management (BYOL)

Click on "Continue to Subscribe"

Click on "Accept Terms" and wait for subscription to be completed

If you are deploying in any region except ca-central-1 or wish to switch to a different license type, you need the new AMI IDs. After successfully

subscribing, continue one more step and click the “Continue to Configuration”. When you get the below screen, select your region and version (Fortinet

v6.4.7 , Checkpoint Mgmt R81.10-335.883 and CloudGuard R80.40-294.374 recommended at this time). Marketplace will provide the required

AMI ID. Document the two AMI IDs, as you will need to update them in your config.json file below.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

•

•

•

•

12.

•

13.

•

•

•

•

•

2.2.1 1. Accelerator Installation Guide

- 19/230 -

https://aws.amazon.com/marketplace/privatemarketplace/create

1.5. Basic Accelerator Configuration

Select a sample config file as a baseline starting point

IMPORTANT: Use a config file from the GitHub code branch you are deploying from, as valid parameters change over time. The main branch

is NOT the current release and often will not work with the GA releases.

sample config files can be found in this folder;

descriptions of the sample config files and customization guidance can be found here;

unsure where to start, use the config.lite-CTNFW-example.json , where CTNFW is for Control Tower w/NFW;

These configuration files can be used, as-is, with only minor modification to successfully deploy the sample architectures;

On upgrades, compare your deployed configuration file with the latest branch configuration file for any new or changed parameters;

At minimum, you MUST update the AWS account names and email addresses in the sample file:

For existing accounts, they must match identically to both the account names and email addresses defined in AWS Organizations (including the

management account);

For new accounts, they must reflect the new account name/email you want created;

All new AWS accounts require a unique email address which has never before been used to create an AWS account;

When updating the budget or SNS notification email addresses within the sample config, a single email address for all is sufficient;

Update the IP address in the "alarm-not-ip" variable with your on-premise IP ranges (used for the AWS-SSO-Authentication-From-Unapproved-IP

alarm);

If deploying the Managed AD, update the dns-domain, netbios-domain, log-group-name, as well as the AD users and groups that will be created;

For a test deployment, the remainder of the values can be used as-is;

While it is generally supported, we recommend not adding more than 1 or 2 workload accounts to the config file during the initial deployment as it will

increase risks of hitting a limit. Once the Accelerator is successfully deployed, add the additional accounts to the config file and rerun the state machine.

More information here on the fields in the config file that need to be updated.

1.

•

•

•

•

•

•

2.

•

•

•

•

•

•

•

•

•

2.2.1 1. Accelerator Installation Guide

- 20/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/

A successful deployment of the prescriptive architecture requires VPC access to 9 AWS endpoints, you cannot remove both the perimeter firewalls (all

public endpoints) and the 9 required central VPC endpoints from the config file (ec2, ec2messages, ssm, ssmmessages, cloudformation,

secretsmanager, kms, logs, monitoring).

When deploying to regions other than ca-central-1 , you need to modify your config file as follows (for Canada Central 1, the AMI IDs are pre-

populated for you):

Update the firewall and firewall manager AMI IDs to reflect your home regions regional AMI IDs (see 2.3.3, item 13), making sure you select the right

version and region per the recommendations.

Validate all the Interface Endpoints defined in your config file are supported in your home region (i.e. Endpoint VPC). Remove unsupported endpoints

from the config file, add additional endpoints as available.

If you are installing into a home region which is explicitly named in any of the replacements\addl_regions_x, remove it from the list. If deploying in us-

east-1, remove ${GBL_REGION}.

Create an S3 bucket in your Organization Management account your-bucket-name

you must supply this bucket name in the CFN parameters and in the config file (global-options\central-bucket)

the bucket name must be the same in both spots

the bucket must have versioning enabled

the bucket must be S3-KMS encrypted using the ASEA-Source-Bucket-Key created above

Place your customized config file(s), named config.json (or config.yaml), in your new bucket

If required, place the firewall configuration and license files in the folder and path defined in the config file

For AWS Network Firewall: nfw/nfw-example-policy.json

For Fortinet: firewall/firewall-example.txt , firewall/license1.lic and firewall/license2.lic

We have made a sample available here: ./reference-artifacts/Third-Party/

the sample configures an active / active firewall pair with two tunnels per firewall

If you updated your perimeter VPC subnet names, you must also make these changes in your firewall-example.txt file

If you don't have any license files, update the config file with an empty array ("license": []). Do NOT use the following: [""] .

The basic Checkpoint configuration is stored directly in config.json

Place any defined certificate files in the folder and path defined in the config file

i.e. certs/example1-cert.key , certs/example1-cert.crt

Sample available here: ./reference-artifacts/Certs-Sample/*

Ideally you would generate real certificates using your existing certificate authority

Should you wish, instructions are provided to aid in generating your own self-signed certificates (Self signed certificates are NOT secure and simply for

demo purposes)

Use the examples to demonstrate Accelerator TLS functionality only

Detach ALL SCPs (except FullAWSAccess which remains in place) from all OU's and accounts before proceeding

For Control Tower based installs do NOT detach Control Tower SCPs (i.e. aws-guardrails-xxxxxx)

Installation will fail if this step is skipped

1.6. Installation

You can find the latest release in the repository here.

We only support new installations of v1.5.5 or above (older releases continue to function)

Download the CloudFormation (CFN) template for the release you plan to install (either AcceleratorInstallerXXX.template.json for GitHub or

AcceleratorInstallerXXX-CodeCommit.template.json for CodeCommit)

Use the provided CloudFormation template to deploy a new stack in your Management (root) AWS account

As previously stated we do not support installation in sub-accounts

Login to your Organization Management account and make sure you are in your desired home region (i.e. ca-central-1) (your desired primary or

control region)

3.

4.

a.

b.

c.

5.

•

•

•

•

6.

7.

•

•

•

•

•

•

•

8.

•

•

•

•

•

9.

•

•

1.

•

2.

3.

•

4.

2.2.1 1. Accelerator Installation Guide

- 21/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/Third-Party/
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/Certs-Sample/
https://github.com/aws-samples/aws-secure-environment-accelerator/releases

Navigate to CloudFormation in the AWS Console and click Create stack with new resources (standard) , then

Select "Template is ready"

For the "Specify template" select "Upload a template file"

Select the *.template.json file you downloaded in step 2 above

Click Next

Fill out the required parameters - LEAVE THE DEFAULTS UNLESS SPECIFIED BELOW

Specify Stack Name STARTING with ASEA- (case sensitive) suggest a suffix of orgname or username

Change ConfigS3Bucket to the name of the bucket you created above your-bucket-name

Add an Email address to be used for State Machine Status notification

The GitHub Branch should point to the release you selected

if upgrading, change it to point to the desired release

the latest stable branch is currently release/v1.5.5 , case sensitive

click Next

Finish deploying the stack

Apply a tag on the stack, Key= Accelerator , Value= ASEA (case sensitive).

ENABLE STACK TERMINATION PROTECTION under Stack creation options

Click Next , Acknowledge resource creation, and click Create stack

The stack typically takes under 5 minutes to deploy.

Once deployed, you should see a CodePipeline project named ASEA-InstallerPipeline in your account. This pipeline connects to GitHub, pulls the

code from the prescribed branch and deploys the Accelerator state machine.

if the CloudFormation fails to deploy with an Internal Failure , or, if the pipeline fails connecting to GitHub, then:

fix the issue with your GitHub secret created in section 2.3.2, then delete the Installer CloudFormation stack you just deployed, and restart at step 3 of

this section.

For new stack deployments, when the stack deployment completes, the Accelerator state machine will automatically execute (in Code Pipeline). When

upgrading you must manually Release Change to start the pipeline.

While the pipeline is running:

review the list of Known Installation Issues in the section below

review the Accelerator Basic Operation and Frequently Asked Questions (FAQ) Document

Once the pipeline completes (~10 mins), the main state machine, named ASEA-MainStateMachine_sm , will start in Step Functions

The state machine time is dependent on the quantity of resources being deployed. On an initial installation of a more complex sample configuration

files, it takes approximately 2 hours to execute (depending on the configuration file). Timing for subsequent executions depends entirely on what

resources are changed in the configuration file, but often takes as little as 20 minutes.

While you can watch the state machine in Step Functions, you will also be notified via email when the State Machine completes (or fails). Successful

state machine executions include a list of all accounts which were successfully processed by the Accelerator.

The configuration file will be automatically moved into Code Commit (and deleted from S3). From this point forward, you must update your configuration

file in CodeCommit.

You will receive an email from the State Machine SNS topic and the 3 SNS alerting topics. Please confirm all four (4) email subscriptions to enable

receipt of state machine status and security alert messages. Until completed, you will not receive any email messages (must be completed within 7-

days).

If the state machine fails:

Refer to the Troubleshooting Guide for instructions on how to inspect and retrieve the error

You can also refer to the FAQ and Known Installation Issues

Once the error is resolved, re-run the step function ASEA-MainStateMachine_sm using {"scope": "FULL","mode": "APPLY"} as input

5.

•

•

•

•

6.

•

•

•

•

•

•

•

7.

•

•

•

•

8.

•

•

9.

10.

•

•

11.

12.

•

13.

14.

15.

•

•

•

2.2.1 1. Accelerator Installation Guide

- 22/230 -

If deploying a prescriptive architecture with 3rd party firewalls, after the perimeter account is created in AWS Organizations, but before the Accelerator

reaches Stage 2:

NOTE: If you miss the step, or fail to execute it in time, no need to be concerned, you will simply need to re-run the main state machine (ASEA-

MainStateMachine_sm) to deploy the firewall (no SM input parameters required)

Login to the perimeter sub-account (Assume your organization-admin-role)

Activate the 3rd party vendor firewall and firewall manager AMI's in the AWS Marketplace

Navigate back to your private marketplace

Note: Employees should see the private marketplace, including the custom color specified in prerequisite step 4 above.

Select "Discover products" from the side bar, then in the "Refine Results" select "Private Marketplace => Approved Products"

Subscribe and Accept the Terms for each product (firewall and firewall manager)

When complete, you should see the marketplace products as subscriptions in the Perimeter account:

If deploying the prescriptive architecture, once the main state machine (ASEA-MainStateMachine_sm) completes successfully, confirm the status of your

perimeter firewall deployment

If you have t2.micro ec2 instances running in any account which had the account-warming flag set to true, they will be removed on the next state

machine execution;

If your perimeter firewalls were defined but not deployed on first run, you will need to rerun the state machine. This happens when:

you were unable to activate the firewall AMI's before stage 2 (step 16)

we were not able to fully activate your account before we were ready to deploy your firewalls. This case can be identified by a running EC2 micro

instance in the account, or by looking for the following log entry 'Minimum 15 minutes of account warming required for account'.

In these cases, simply select the ASEA-MainStateMachine_sm in Step Functions and select Start Execution (no SM input parameters required)

16.

a.

b.

c.

•

•

•

•

•

17.

•

•

a.

b.

c.

2.2.1 1. Accelerator Installation Guide

- 23/230 -

1.6.1. KNOWN INSTALLATION ISSUES

Current Issues:

If dns-resolver-logging is enabled, VPC names containing spaces are not supported at this time as the VPC name is used as part of the log group

name and spaces are not supported in log group names. By default in many of the sample config files, the VPC name is auto-generated from the

OU name using a variable. In this situation, spaces are also not permitted in OU names (i.e. if any account in the OU has a VPC with resolver

logging enabled and the VPC is using the OU as part of its name)

On larger deployments we are occasionally seeing state machine failures when Creating Config Recorders . Simply rerun the state machine

with the input of {"scope": "FULL", "mode": "APPLY"} .

Occasionally CloudFormation fails to return a completion signal. After the credentials eventually fail (1 hr), the state machine fails. Simply rerun the

state machine with the input of {"scope": "FULL", "mode": "APPLY"}

If the State Machine fails on an initial execution of NEW-ACCOUNTS, it must be re-run to target the failed accounts (i.e. with {"scope": "FULL",

"mode": "APPLY"}) or the new sub-accounts will fail to be properly guardrailed

Issues in Older Releases:

New installs to releases prior to v1.5.5 are no longer supported.

Upgrades to releases prior to v1.5.5 are no longer supported.

Upgrades to v1.3.9 in preparation for an upgrade to v1.5.5 may be possible with manual workarounds.

FROM 2022-08-07 to 2022-10-12: An issue with the version of cfn-init in the "latest" AWS standard Windows AMI will cause the state machine to

fail during a new installation when deploying an RDGW host. RDGW hosts in existing deployments will fail to fully initialize if the state machine is or

has been recently run and the auto-scaling group subsequently refreshes the host (default every 7 days).

To temporarily workaround this issue, assume an administrative role in your operations account, open Systems Manager Parameter Store, and

Create parameter with a Name of /asea/windows-ami and a value of ami-0d336ea070bc06fb8 (which is the previous good AMI in ca-central-1),

accepting the other default values. Update your config file to point to this new parameter by changing image-path (under \deployments\mad) to /

asea/windows-ami instead of /aws/service/ami-windows-latest/Windows_Server-2016-English-Full-Base . Rerun your state machine. If you

have an existing RDGW instance it should be terminated to allow the auto-scaling group to redeploy it. In other regions you will need to lookup the

previous working ami-id (you cannot use ami-0d336ea070bc06fb8)

This issue was resolved with the 2022-10-12 Windows AMI release. Customers that implemented this workaround must revert the above

config file entry and rerun their state machines (the above AMI has been deprecated).

•

•

•

•

•

•

•

•

•

•

2.2.1 1. Accelerator Installation Guide

- 24/230 -

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-windows-ami-version-history.html

1.7. Post Installation

The Accelerator installation is complete, but several manual steps remain:

2.2.1 1. Accelerator Installation Guide

- 25/230 -

Enable and configure AWS SSO in your home region (i.e. ca-central-1)

NOTE: AWS SSO has been renamed to AWS IAM Identity Center (IdC). The IdC GUI has also been reworked. The below steps are no longer

click-by-click accurate. An update to the below documentation is planned, which will also include instructions to delegate AWS IdC

administration to the Operations account enabling connecting IdC directly to MAD, rather than through an ADC.

Login to the AWS Console using your Organization Management account

Navigate to AWS Single Sign-On, click Enable SSO

Set the SSO directory to AD ("Settings" => "Identity Source" => "Identity Source" => click Change , Select Active Directory, and select your domain from

the list)

Under "Identity Source" section, Click Edit beside "Attribute mappings", then set the email attribute to: ${dir:email} and click Save Changes

Configure Multi-factor authentication, we recommend the following minimum settings:

Every time they sign in (always-on)

Security key and built-in authenticators

Authenticator apps

Require them to provide a one-time password sent by email to sign in

Users can add and manage their own MFA devices

Create all the default permission sets and any desired custom permission sets

e.g. Select AWS accounts from the side bar, select "Permission sets" tab then Create permission set

Use an existing job function policy => Next

Select job function policy AdministratorAccess

Add Tags, Review and Create

repeat for each default permission set and any required custom permission sets

For Control Tower based installations, remove the orphaned Permission Sets from each AWS accounts (select the account, expand Permission Sets,

click Remove for each)

Map MAD groups to permission sets and accounts

Select AWS accounts from the side bar and select AWS organization tab

Select the accounts you want to map to each MAD group and click Assign users

Select your DNS domain e.g. example.local , and search for the group you would like to assign (e.g. aws- for the pre-created groups) and click

Search connected directory

Select the desired group aws-log-archive-View

Select the permission set you would like to assign to the MAD group to (e.g. ViewOnlyAccess)

Click Finish (Note: if it fails during provisioning, simply select the failed accounts and click on "Retry changes")

AWS SSO should be the primary mechanism for all access to all AWS accounts in your Organization, to determine or update the login page for your

organization:

Click on Dashboard within the AWS SSO console and note the User portal URL

Share this url with all your users

NOTE: the url prefix can only be changed ONCE (ever) using the settings tab, so update with caution

Any pre-created AWS MAD users passwords are available in secrets manager in the AWS management account. To reset these passwords login to the

Operations account through AWS SSO, then:

Navigate to "Directory Service" , select the directory => Actions => Reset user password

Users can change their passwords from any MAD domain connected instance

1.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.1 1. Accelerator Installation Guide

- 26/230 -

Configure the new alb-forwarding feature (added in v1.5.0)

AWS ALB's are published using DNS names which resolve to backing IP's which could silently change at any time due to a scaling event, maintenance,

or a hardware failure. While published as a DNS name, ALB's can only target IP addresses. This presents a challenge as we need the ALB's in the

perimeter account to target ALB's in the various back-end workload accounts;

Alb-forwarding solves this problem by executing a small snippet of code every 60 seconds which updates managed ALB listeners with any IP changes,

ensuring any managed flows do not go offline. This removes the requirement to leverage a 3rd party appliance to perform NAT to a DNS name;

Alb-forwarding is enabled on the perimeter VPC in the perimeter account in many of the sample configs and can be used with Accelerator created or

customer created ALB's. This setting causes a new DynamoDB table named ASEA-Alb-Ip-Forwarding-vpc-* to be created in the perimeter account.

Additionally the parameter store in the perimeter account contains the details of all Accelerator deployed ALB's across the environment for easy

reference;

Steps to configure:

First you need to manually create a listener on the front-end ALB (without a target group), multiple listeners are supported;

Next, for each application that needs to be published, a record needs to be added to the DynamoDB table, see sample below;

Records can be added to the table for any ALB in the account running the alb-forwarding tool. Records can be added at any time. DDB change logs will

trigger the initial creation of the appropriate target group(s) and IP addresses will be verified and updated every 60 seconds thereafter.

On a per role basis, you need to enable the CWL Account Selector in the Security and the Operations accounts, in each account:

Go to CloudWatch, Settings, Under Cross-account cross-region select Configure , Under View cross-account cross-region select Edit ,

choose AWS Organization account selector , click Save changes

Configure central Ingress/Egress firewalls, if deployed

Layer 3/4 appliance based inspection is an optional feature

General

If deployed, login to any 3rd party firewalls and firewall manager appliances and update any default passwords;

Tighten security groups on the 3rd party firewall instances (using the Accelerator configuration file), further limiting access to firewall management

interfaces to a set of designated and controlled CIDR ranges;

Update the firewall configuration per your organization's security requirements and best practices;

Diagrams reflecting perimeter traffic flows when NFW and/or GWLB are used can be found here on slides 6 through 9.

AWS Network Firewall

The AWS Network Firewall policies and rules deployed by the Accelerator, can only be updated using the Accelerator. Customers wishing to manage

the AWS Network Firewall from the console GUI, must create a new policy with new rules created through the console and then manually associate this

new policy to the Accelerator deployed Network Firewall. Customers can choose either option, but they cannot be mixed to ensures that Accelerator

updates do not overwrite console based updates.

2.

•

•

•

•

•

•

•

Sample DynamoDB JSON to add an entry to the table:

{

 "id": "App1",

 "targetAlbDnsName": "internal-Core-mydevacct1-alb-123456789.ca-central-1.elb.amazonaws.com",

 "targetGroupDestinationPort": 443,

 "targetGroupProtocol": "HTTPS",

 "vpcId": "vpc-0a6f44a80514daaaf",

 "rule": {

 "sourceListenerArn": "arn:aws:elasticloadbalancing:ca-central-1:123456789012:listener/app/Public-DevTest-perimeter-alb/b1b12e7a0c412bf3/ef9b022a4fdd8bdf",

 "condition": {

 "paths": ["/img/*", "/myApp2"],

 "hosts": ["aws.amazon.com"],

 "priority": 30

 }

 }

}

- where `id` is any unique text, `targetAlbDnsName` is the DNS address for the backend ALB for this application (found in parameter store), `vpcId` is the vpc
ID containing the front-end ALB (in this account), `sourceListenerArn` is the arn of the listener of the front-end ALB, `paths` and `hosts` are both optional,
but one of the two must be supplied. Finally, `priority` must be unique and is used to order the listener rules. Priorities should be spaced at least 40 apart
to allow for easy insertion of new applications and forwarder rules.

- the provided `targetAlbDnsName` must resolve to addresses within a [supported](https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-
balancer-target-groups.html) IP address space.

3.

•

4.

•

•

•

•

•

•

2.2.1 1. Accelerator Installation Guide

- 27/230 -

Fortinet

Manually update firewall configuration to forward all logs to the Accelerator deployed NLB addresses fronting the rsyslog cluster

login to each firewall, select Log Settings , check Send logs to syslog , put the NLB FQDN in the IP Address/FQDN field (stored in parameter store

of perimeter account)

Manually update the firewall configuration to connect perimeter ALB high port flows through to internal account ALB's

Note: while this option is still available, a new alb-forwarding mechanism is available in v1.5.0+ (see section 2 above) which simplifies and eliminates

this more complicated "NAT to DNS name" option;

login to each firewall, switch to FG-traffic vdom, select Policies & Objects , select Addresses , Expand Addresses

Set Prod1-ALB-FQDN to point to a reliable sub-account ALB FQDN, this is used for full-path health checks on all ALB's

Set additional DevX-ALB-FQDN , TestX-ALB-FQDN and ProdX-ALB-FQDN to point to workload account ALB FQDNs

Two of each type of ALB FQDN records have been created, when you need more, you need to create BOTH an additional FQDN and a new VIP, per

ALB

Each new VIP will use a new high port (i.e. 7007, 7008, etc.), all of which map back to port 443

Detailed steps can be read here.

•

•

•

•

•

•

•

•

•

•

2.2.1 1. Accelerator Installation Guide

- 28/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/blob/v1.5.6-a/src/mkdocs/docs/guides/fortigate/public-facing-workload-via-fortigate.md

Checkpoint

Download and install Checkpoint SmartConsole client on your PC (only available for Windows, if you have a Mac, you can use Workspaces to install

the client)

Retrieve the firewall and firewall manager SSL certificate from secrets manager in the perimeter account and save to a pem file (convert to ppk on

Windows)

Login to the AWS Console for the Perimeter account

Navigate to Secrets Manager and select Secrets

Look for Secret name ASEA/keypair/ASEA-Appliances and click on it

Go to the Secret value section and click on Retrieve secret value

Make sure you have the Plaintext tab selected and copy the content to a .pem file using your preferred text editor. (the file will need to be converted

to ppk format on Windows)

Wait approx. 25 min. after the managers "Launch time" and then SSH into the Firewall Manager using the SSL certificate (.pem file retrieved above) and

login user admin

The firewall manager EC2 instance name is ASEA-Checkpoint-FirewallMgr

Once you SSH successfully, execute the following commands:

set user admin password

set expert-password

set user admin shell /bin/bash

save config

The following commands are useful for troubleshooting (in expert mode):

autoprov_cfg -v (check cme at Take 155 or greater)

autoprov_cfg show all (check cme configuration)

cat /var/log/aws-user-data.log (validate bootstrap, file should end with "Publish operation" succeeded (100%))

tail -f /var/log/CPcme/cme.log (watch to ensure it finds the instances, establishes SIC and adds the nodes)

Login to SmartConsole, and update the firewall policy per your organizations security requirements

An outbound rule allowing http and https should exist

From the RDGW host in Operations, test to see if outbound web browsing is enabled

NOTES:

No best practice or security configuration has been configured on the Checkpoint firewalls. These firewalls have been configured to work with GWLB,

but otherwise have the default/basic Checkpoint out-of-box configuration installed

Do NOT reboot the Checkpoint appliances until bootstrap is complete (~25 minutes for the manager), or you will be required to redeploy the instance

Recover root passwords for all sub-accounts and apply strong passwords

Process documented here

Enable MFA for all IAM users and all root account users, recommendations:

Yubikeys provide the strongest form of MFA protection and are strongly encouraged for all account root users and all IAM users in the Organization

Management (root) account

the Organization Management (root) account requires a dedicated Yubikey (if access is required to a sub-account root user, we do not want to expose

the Organization Management accounts Yubikey)

every ~50 sub-accounts requires a dedicated Yubikey (minimize the required number of Yubikeys and the scope of impact should a Yubikey be lost or

compromised)

each IAM breakglass user requires a dedicated Yubikey, as do any additional IAM users in the Organization Management (root) account. While some

CSPs do not recommend MFA on the breakglass users, it is strongly encouraged in AWS

all other AWS users (AWS SSO, IAM in sub-accounts, etc.) can leverage virtual MFA devices (like Google Authenticator on a mobile device)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.

•

6.

•

•

•

•

•

2.2.1 1. Accelerator Installation Guide

- 29/230 -

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys_retrieve.html#reset-root-password

Customers are responsible for the ongoing management and rotation of all passwords on a regular basis per their organizational password policy. This

includes the passwords of all IAM users, MAD users, firewall users, or other users, whether deployed by the Accelerator or not. We do NOT

automatically rotate any passwords, but strongly encourage customers do so, on a regular basis.

During the installation we request required limit increases, resources dependent on these limits will not be deployed

Limit increase requests are controlled through the Accelerator configuration file "limits":{} setting

The sample configuration file requests increases to your EIP count in the perimeter account and to the VPC count and Interface Endpoint count in the

shared-network account

You should receive emails from support confirming the limit increases

On the next state machine execution, resources blocked by limits should be deployed (i.e. additional VPC's and Endpoints)

If more than 2 days elapses without the limits being increased, on the next state machine execution, they will be re-requested

Note: After a successful install the Control Tower Organizational units' dashboard will indicate 2 of 3 in the Accounts enrolled column for the

Security OU, as it does not enable enrollment of the management account in guardrails. The Accelerator compliments Control Tower and enables

guardrails in the management account which is important to high compliance customers.

1.8. Other Operational Considerations

The Organization Management (root) account does NOT have any preventative controls to protect the integrity of the Accelerator codebase,

deployed objects or guardrails. Do not delete, modify, or change anything in the Organization Management (root) account unless you are certain

as to what you are doing. More specifically, do NOT delete, or change any buckets in the Organization Management (root) account.

While generally protected, do not delete/update/change S3 buckets with cdk-asea-, or asea- in any sub-accounts.

ALB automated deployments only supports Forward and not redirect rules.

AWS generally discourages cross-account KMS key usage. As the Accelerator centralizes logs across an entire organization as a security best

practice, this is an exception/example of a unique situation where cross-account KMS key access is required.

Only 1 auto-deployed MAD in any mandatory-account is supported today.

VPC Endpoints have no Name tags applied as CloudFormation does not currently support tagging VPC Endpoints.

If the Organization Management (root) account coincidentally already has an ADC with the same domain name, we do not create/deploy a new

ADC. You must manually create a new ADC (it won't cause issues).

3rd party firewall updates are to be performed using the firewall OS based update capabilities. To update the AMI using the Accelerator, you must

first remove the firewalls and then redeploy them (as the EIP's will block a parallel deployment), or deploy a second parallel FW cluster and de-

provision the first cluster when ready.

When adding more than 100 accounts to an OU which uses shared VPC's, you must first increase the Quota Participant accounts per VPC in

the shared VPC owner account (i.e. shared-network). Trapping this quota before the SM fails has been added to the backlog.

The default limit for Directory Sharing is 125 accounts for an Enterprise Managed Active Directory (MAD), a quota increase needs to be manually

requested through support from the account containing the MAD before this limit is reached. Standard MAD has a sharing limit of 5 accounts (and

only supports a small quota increase). The MAD sharing limit is not available in the Service Quota's tools.

7.

8.

a.

b.

c.

d.

e.

9.

•

•

•

•

•

•

•

•

•

•

2.2.1 1. Accelerator Installation Guide

- 30/230 -

2.2.2 1. Accelerator Sample Configurations and Customization

1.1. Summary

Sample config files can be found in this folder

Most of the examples reflect a medium security profile (NIST, ITSG, FEDRAMP)

Unsure where to start, use config.lite-CTNFW-example.json (CT w/NFW variant of option 2)

Frugal and want something comprehensive to experiment with, use config.test-example.json (option 5)

Config file schema documentation (Draft)

Estimated monthly pricing for sample configurations

1.2. Sample Configuration Files with Descriptions

1.2.1. FULL CONFIGURATION (CONFIG.EXAMPLE.JSON)

The full configuration file was based on feedback from customers moving into AWS at scale and at a rapid pace. Customers of this nature have

indicated that they do not want to have to upsize their perimeter firewalls or add Interface endpoints as their developers start to use new AWS

services. These are the two most expensive components of the deployed architecture solution.

Default settings:

AWS Control Tower: No

Firewall: IPSec VPN with Active/Active Fortinet cluster (uses BGP+ECMP)

1.2.2. LITE WEIGHT CONFIGURATION FILES

Four variants with differing central ingress/egress firewalls

Variant 1: Recommended starting point (config.lite-CTNFW-example.json)

Default Settings:

AWS Control Tower: Yes

Firewall: AWS Network Firewall

Variant 2: Recommended for new GC PBMM customers (config.lite-VPN-example.json)

requires 3rd party licensing (BYOL or PAYGO)

Default Settings:

AWS Control Tower: No

Firewall: IPSec VPN with Active/Active Fortinet cluster (uses BGP+ECMP)

Variant 3: (config.lite-NFW-example.json)

Same as Variant 1 config without AWS Control Tower

Default Settings:

AWS Control Tower: No

Firewall: AWS Network Firewall

Variant 4: (config.lite-GWLB-example.json)

requires 3rd party licensing (BYOL or PAYGO)

Default Settings:

AWS Control Tower: No

Firewall: Gateway Load Balancer with Checkpoint firewalls in an autoscaling group

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.2 1. Accelerator Sample Configurations and Customization

- 31/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/config.lite-CTNFW-example.json
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/config.test-example.json
https://aws-samples.github.io/aws-secure-environment-accelerator/schema/en/index.html
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/config.example.json
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/config.lite-CTNFW-example.json
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/config.lite-VPN-example.json
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/config.lite-NFW-example.json
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/config.lite-GWLB-example.json

To reduce solution costs and allow customers to grow into more advanced AWS capabilities, we created these lite weight configurations that does

not sacrifice functionality, but could limit performance. These config files:

only deploys the 9 required centralized Interface Endpoints (removes 50 from full config). All services remain accessible using the AWS public

endpoints, but require traversing the perimeter firewalls

removes the perimeter VPC Interface Endpoints

reduces the Fortigate instance sizes from c5n.2xl to c5n.xl (VM08 to VM04) in Variant 2: IPSec VPN with Active/Active Fortinet cluster option

removes the Unclass ou and VPC

AWS Control Tower can be implemented in all sample configs using Variant 1: AWS Control Tower with AWS Network Firewall as an example (new

installs only).

The Accelerator allows customers to easily add or change this functionality in future, as and when required without any impact

1.2.3. ULTRA-LITE SAMPLE CONFIGURATION

Variant 1: (config.ultralite-CT-example.json)

AWS Control Tower: Yes

Firewall: None

Networking: None

Variant 2: (config.ultralite-example.json)

AWS Control Tower: No

Firewall: None

Networking: None

This configuration file was created to represent an extremely minimalistic Accelerator deployment, simply to demonstrate the art of the possible for

an extremely simple config. This example is NOT recommended as it violates many AWS best practices. This config has:

no shared-network or perimeter accounts

no networking (VPC, TGW, ELB, SG, NACL, endpoints) or route53 (zones, resolvers) objects

no Managed AD, AD Connector, rsyslog cluster, RDGW host, or 3rd party firewalls

only enables/deploys AWS security services in 2 regions (ca-central-1, us-east-1) (Not recommended)

only deploys 2 AWS config rules w/SSM remediation

renamed log-archive (Logs), security (Audit) and operations (Ops) account names

1.2.4. MULTI-REGION SAMPLE CONFIGURATION (CONFIG.MULTI-REGION-EXAMPLE.JSON)

This configuration file was created to represent a more advanced multi-region version of the Full configuration file from configuration 1 above. This

config:

adds a TGW in us-east-1, peered to the TGW in ca-central-1

adds TGW static routes, including several dummy sample static routes

adds a central Endpoint VPC in us-east-1 with us-east-1 endpoints configured

adds a shared VPC for all UnClass OU accounts in us-east-1, connected to the us-east-1 TGW (accessible through ca-central-1)

creates additional zones and resolver rules

Sends us-east-1 CloudWatch Logs to the central S3 log-archive bucket in ca-central-1

Deploys SSM documents to us-east-1 and remediates configured rules in UnClass OU

adds a local account specific VPC, in us-east-1, in the account MyUnClass and connects it to the us-east-1 TGW (i.e. shares TGW)

local account VPC set to use central endpoints, associates appropriate centralized hosted zones to VPC (also creates 5 local endpoints)

adds a VGW for DirectConnect to the perimeter VPC

adds the 3rd AZ in ca-central-1 (MAD & ADC in AZ a & b)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.2 1. Accelerator Sample Configurations and Customization

- 32/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/config.ultralite-CT-example.json
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/config.ultralite-example.json
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/config.multi-region-example.json

Default Settings:

AWS Control Tower: No

Firewall: IPSec VPN with Active/Active Fortinet cluster (uses BGP+ECMP)

1.2.5. TEST CONFIGURATION (CONFIG.TEST-EXAMPLE.JSON) (USE FOR TESTING OR LOW SECURITY PROFILES)

Further reduces solution costs, while demonstrating full solution functionality (NOT recommendend for production). This config file:

uses the Lite weight configuration as the starting point (NFW variant)

consolidates Dev/Test/Prod OU to a single Workloads OU/VPC

only enables Security Hub, Config and Macie in ca-central-1 and us-east-1

removes the Fortigate firewall cluster (per NFW variant)

removes the rsyslog cluster

reduces the RDGW instance sizes from t2.large to t2.medium

reduces the size of the MAD from Enterprise to Standard edition

removes the on-premise R53 resolvers (hybrid dns)

reduced various log retention periods and the VPCFlow log interval

removes the two example workload accounts

adds AWS Network Firewall (NFW) and AWS NATGW for centralized ingress/egress (per NFW variant)

Default Settings:

AWS Control Tower: No

Firewall: AWS Network Firewall

1.3. Deployment Customizations

1.3.1. MULTI-FILE CONFIG FILE AND YAML FORMATTING OPTION

The sample configuration files are provided as single, all encompassing, json files. The Accelerator also supports both splitting the config file into

multiple component files and configuration files built using YAML instead of json. Details can be found in the linked document.

1.3.2. SAMPLE SNIPPETS

The sample configuration files do not include the full range of supported configuration file parameters and values, additional configuration file

parameters and values can be found in the sample snippets document.

1.3.3. THIRD PARTY FIREWALL EXAMPLE CONFIGS

The Accelerator is provided with a sample 3rd party configuration file to demonstrate automated deployment of 3rd party firewall technologies.

Given the code is vendor agnostic, this process should be able to be leveraged to deploy other vendors firewall appliances. When and if other

options become available, we will add them here as well.

Automated firewall configuration customization possibilities

Sample Fortinet Fortigate firewall config file

1.4. Other Configuration File Hints and Tips

It is critical that all accounts that are leveraged by other accounts (i.e. accounts that any workload accounts are dependant on), are included in the

mandatory-accounts section of the config file (i.e. shared-network, log-archive, operations)

Account pointers within the config file point to the account key (i.e. (mandatory-account-configs\account-key) and NOT the account name field

(mandatory-account-configs\account-key\account-name: "account name"). This allows for easy account names, duplicate account names,

and no requirement to update account pointers during account renames.

If any of the account pointers within global-options does not point to a valid mandatory account key, the State Machine will fail with the error

EnvironmentVariable value cannot be null before starting CodeBuild Phase -1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.2 1. Accelerator Sample Configurations and Customization

- 33/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/config.test-example.json
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/sample_snippets.md
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/firewall_file_available_variables.md
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/Third-Party

You cannot supply (or change) configuration file values to something not supported by the AWS platform

For example, CWL retention only supports specific retention values (not any number)

Shard count - can only increase/reduce by half the current limit. i.e. you can change from 1 - 2 , 2 - 3 , 4 - 6

Always add any new items to the END of all lists or sections in the config file, otherwise

Update validation checks will fail (VPC's, subnets, share-to, etc.)

To skip, remove or uninstall a component, you can often simply change the section header, instead of removing the section

change "deployments"/"firewalls" to "deployments"/"xxfirewalls" and it will uninstall the firewalls and maintain the old config file settings for future

use

Objects with the parameter deploy: true, support setting the value to false to remove the deployment

As you grow and add AWS accounts, the Kinesis Data stream in the log-archive account will need to be monitored and have its capacity (shard

count) increased by setting "kinesis-stream-shard-count" variable under "central-log-services" in the config file

Updates to NACL's requires changing the rule number (100 to 101) or they will fail to update

When adding a new subnet or subnets to a VPC (including enabling an additional AZ), you need to:

increment any impacted NACL id's in the config file (100 to 101 , 32000 to 32001) (CFN does not allow nacl updates)

make a minor change to any impacted route table names (MyRouteTable to MyRouteTable1) (CFN does not allow updates to route table

associated ids)

The sample VPN firewall configuration uses an instance with 4 NIC's, make sure you use an instance size that supports 4 ENI's

Firewall names, CGW names, TGW names, MAD Directory ID, account keys, and OU's must all be unique throughout the entire configuration file

(also true for VPC names given NACL and security group referencing design)

The configuration file does have validation checks in place that prevent users from making certain major unsupported configuration changes

The configuration file does NOT have extensive error checking. It is expected you know what you are doing. We eventually hope to offer

a config file, wizard based GUI editor and add the validation logic in this separate tool. In most cases the State Machine will fail with an

error, and you will simply need to troubleshoot, rectify and rerun the state machine.

You cannot move an account between top-level OU's. This would be a security violation and cause other issues. You can move accounts between

sub-ou. Note: The Control Tower version of the Accelerator does NOT support sub-ou's.

When using YAML configuration files, we only support the subset of yaml that converts to JSON (we do not support anchors)

Security Group names were designed to be identical between environments, if you want the VPC name in the SG name, you need to do it

manually in the config file

Adding more than approximately 50 new VPC Interface Endpoints across all regions in any one account in any single state machine execution will

cause the state machine to fail due to Route 53 throttling errors. If adding endpoints at scale, only deploy 1 region at a time. In this scenario, the

stack(s) will fail to properly delete, also based on the throttling, and will require manual removal.

We do not support Directory unsharing or ADC deletion, delete methods were not implemented. We only support ADC creation in mandatory

accounts.

If use-central-endpoints is changed from true to false, you cannot add a local VPC endpoint on the same state machine execution (add the

endpoint on a prior or subsequent execution)

If you update the 3rd party firewall names, be sure to update the routes and alb's which point to them. Firewall licensing occurs through the

management port, which requires a VPC route back to the firewall to get internet access and validate the firewall license.

Removing the AWS NFW requires 2 state machine executions, in the first you must remove all routes that reference the NFW, and in the second

you can remove or xx out the NFW (also true for the GWLB implementation).

1.5. Config file and Deployment Protections

The config file is moved to AWS CodeCommit after the first execution of the state machine to provide strong configuration history, versioning and

change control

After each successful state machine execution, we record the commit id of the config file used for that execution in secrets manager

On every state machine execution, before making any changes, the Accelerator compares the latest version of the config file stored in

CodeCommit with the version of the config file from the last successful state machine execution (after replacing all variables)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.2 1. Accelerator Sample Configurations and Customization

- 34/230 -

If the config file includes any changes we consider to be significant or breaking, we immediately fail the state machine

if a customer somehow accidentally uploads a different customers config file into their Accelerator CodeCommit repository, the state machine will

fail

if a customer makes what we consider to be a major change to the config file, the state machine will fail

if a customer makes a change that we believe has a high likelihood to cause a deployment failure, the state machine will fail

If a customer believes they understand the full implications of the changes they are making (and has made any required manual changes to allow

successful execution), we have provided protection override flags. These overrides should be used with extremely caution:

To provide maximum protection we have provided scoped override flags. Customers can provide a flag or flags to only bypass specific type(s) of

config file validations or blocks. If using an override flag, we recommend customers use these scoped flags in most situations.

If a customer is purposefully making extensive changes across the config file and wants to simply override all checks with a single override flag,

we also have this option, but discourage it use.

The various override flags and their format can be found in here.

1.6. Summary of Example Config File Minimum Changes for New Installs

At a minimum you should consider reviewing the following config file sections and make the required changes.

1.6.1. GLOBAL OPTIONS

S3 Central Bucket

global-options/central-bucket : "AWSDOC-EXAMPLE-BUCKET"

replace with your-bucket-name as referenced in the Installation Guide Step #5

Central Log Services SNS Emails

global-options/central-log-services/sns-subscription-emails : "myemail+notifyT-xxx@example.com"

update the 3 email addresses (high, medium and low) as required. Each address will receives alerts or alarms of the specified level. The same

email address can be used for all three.

The default dynamic CIDR pools (global-options/cidr-pools) listed below are used to assign ranges based on the subnet mask set in each

VPC and subnet throughout the configuration file.

global-options/cidr-pools/0/cidr : "10.0.0.0/13"

The main address pool used to dynamically assign CIDR ranges for most VPCs

global-options/cidr-pools/1/cidr : "100.96.252.0/23"

Address pool used to dynamically assign CIDR ranges for the Managed Active Directory subnets in the Ops account

global-options/cidr-pools/2/cidr : "100.96.250.0/23"

Address pool used to dynamically assign CIDR ranges for the Perimeter VPC

global-options/cidr-pools/3/cidr : "10.249.1.0/24"

A non-routable pool of addresses used to dynamically assign CIDR ranges for the Active Directory Connector subnets in the Organization

Management/root account

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.2 1. Accelerator Sample Configurations and Customization

- 35/230 -

1.6.2. MANDATORY ACCOUNT CONFIGS

All mandatory accounts specific to your config file, that are present under the mandatory-account-config section require you to assign a unique

email address for each account listed below. Replace the email values in the JSON config file for these accounts with unique email addresses.

mandatory-account-configs/shared-network/email : "myemail+aseaT-network@example.com---------------------REPLACE------------"

mandatory-account-configs/operations/email : "myemail+aseaT-operations@example.com---------------------REPLACE------------"

mandatory-account-configs/perimeter/email : "myemail+aseaT-perimeter@example.com---------------------REPLACE------------"

mandatory-account-configs/management/email : "myemail+aseaT-management@example.com---------------------REPLACE------------" (Note: This

is the email of your root account)

mandatory-account-configs/log-archive/email : "myemail+aseaT-log@example.com---------------------REPLACE------------"

mandatory-account-configs/security/email : "myemail+aseaT-sec@example.com---------------------REPLACE------------"

Budget Alerts email addresses need to be replaced with an email address in your organization. It can be the same email address for all budget

alerts. Config located at the following path (Multiple exist for different thresholds, update all under each account):

mandatory-account-configs/shared-network/budget/alerts/emails : "myemail+aseaT-budg@example.com"

mandatory-account-configs/perimeter/budget/alerts/emails : "myemail+aseaT-budg@example.com"

mandatory-account-configs/management/budget/alerts/emails : "myemail+aseaT-budg@example.com"

For the shared-network account, review and update the following (or delete the sections):

mandatory-account-configs/shared-network/vpc/on-premise-rules/zone : "on-premise-privatedomain1.example.ca" (qty 2)

mandatory-account-configs/shared-network/vpc/zones/private : "cloud-hosted-privatedomain.example.ca"

mandatory-account-configs/shared-network/vpc/zones/public : "cloud-hosted-publicdomain.example.ca"

For the operations account, review and update the following:

mandatory-account-configs/operations/deployments/mad/dns-domain : "example.local"

mandatory-account-configs/operations/deployments/mad/netbios-domain : "example"

mandatory-account-configs/operations/deployments/mad/log-group-name : "/${ACCELERATOR_PREFIX_ND}/MAD/example.local" (replace

example.local)

mandatory-account-configs/operations/deployments/mad/ad-users (update user, email and group of each user as required)

do not remove or change permissions on the adconnector-usr

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.2 1. Accelerator Sample Configurations and Customization

- 36/230 -

For perimeter account, review and update the following:

mandatory-account-configs/perimeter/certificates/priv-key : "certs/example1-cert.key"

mandatory-account-configs/perimeter/certificates/cert : "certs/example1-cert.crt"

If you are using VPN config:

mandatory-account-configs/perimeter/deployments/firewalls/image-id : "ami-0d8e2e78e928def11"

Update AMI with the AMI collected from the Marketplace for Fortinet FortiGate (BYOL) Next-Generation Firewall

mandatory-account-configs/perimeter/deployments/xxfirewall-manager/image-id : "ami-0e9f45c3ec34c3a9a"

Update AMI with the AMI collected from the Marketplace for Fortinet FortiManager (BYOL) Centralized Security Management

NOTE: Default config of "xxfirewall-manager" will prevent the firewall manager from being deployed. To deploy the firewall manager remove the

"xx" to set the parameter to "firewall-manager"

mandatory-account-configs/perimeter/deployments/firewalls/license : ["firewall/license1.lic", "firewall/license2.lic"]

Two Fortinet FortiGate firewall licenses, if you don't have any license files, update the config file with an empty array ("license": []). Do NOT use the

following: [""]

Place files in a folder (eg. firewall) in the same S3 bucket in your Organization Management account as the deployment configuration file.

mandatory-account-configs/perimeter/deployments/firewalls/config : "firewall/firewall-example.txt"

The Fortinet configuration file to initially configure the firewalls. Sample configuration files can be found in the reference-artifacts/Third-Party folder

Place file in a folder (eg. firewall) in the same S3 bucket in your Organization Management account as the deployment configuration file.

If you are using GWLB config:

mandatory-account-configs/perimeter/deployments/firewalls/Checkpoint-Firewall - image-id : "ami-0217611bf09d5b4c1"

Update AMI with the AMI collected from the Marketplace for CloudGuard Network Security for GWLB - BYOL

mandatory-account-configs/perimeter/deployments/firewall-manager/image-id : "ami-0071a3b4ef9ac766a"

Update AMI with the AMI collected from the Marketplace for Checkpoint Security Management

mandatory-account-configs/perimeter/deployments/firewall-manager/version : "R8110BYOLMGMT"

Update version based on the selected ami-id version from the Private Marketplace

For management , review and update the following:

mandatory-account-configs/management/account-name : "ASEA-Main"

Update this field with your Organization Management (root) account name, if it is not set to ASEA-Main.

mandatory-account-configs/management/iam/users

the names of your break-glass and ASEA operation users

1.6.3. WORKLOAD ACCOUNT CONFIGS

As mentioned in the Installation Guide, we recommend not adding more than 1 or 2 workload accounts to the config file during the initial

deployment as it will increase risks of hitting a limit. Once the Accelerator is successfully deployed, add the additional accounts back into the config

file and rerun the state machine.

Review the workload accounts in the config that you selected and change the name and email as desired

Modify mydevacct1 with the account name of your choosing

Modify mydevacct1/account-name : "MyDev1" with the account name

Modify mydevacct1/email : "myemail+aseaT-dev1@example.com---------------------REPLACE------------" with a unique email address for the account

Modify mydevacct1/description : "This is an OPTIONAL SAMPLE workload account..." with a description relevant to your account

Modify mydevacct1/ou : "Dev" with the OU that you would like the account to be attached to

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.2 1. Accelerator Sample Configurations and Customization

- 37/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/Third-Party/

1.6.4. ORGANIZATION UNITS

For all organization units, update the budget alerts email addresses:

organizational-units/core/default-budgets/alerts/emails : "myemail+aseaT-budg@example.com"

organizational-units/Central/default-budgets/alerts/emails : "myemail+aseaT-budg@example.com"

organizational-units/Dev/default-budgets/alerts/emails : "myemail+aseaT-budg@example.com"

organizational-units/Test/default-budgets/alerts/emails : "myemail+aseaT-budg@example.com"

organizational-units/Prod/default-budgets/alerts/emails : "myemail+aseaT-budg@example.com"

organizational-units/Sandbox/default-budgets/alerts/emails : "myemail+aseaT-budg@example.com"

For organization units with certificates , review the certificates and update as you see fit. These certificates are used in the alb section under

alb/cert-name of each OU

•

•

•

•

•

•

•

•

2.2.2 1. Accelerator Sample Configurations and Customization

- 38/230 -

2.2.3 1. State Machine Behavior and Inputs

1.1. State Machine Behavior

Accelerator v1.3.0 makes a significant change to the manner in which the state machine operates. These changes include:

Reducing the default scope of execution of the state machine to only target newly created AWS accounts and AWS accounts listed in the mandatory

accounts section of the config file.

default scope refers to running the state machine without any input parameters;

This new default scope disallows any changes to the config file outside new accounts;

NOTE: it is critical that accounts for which others are dependant upon, MUST be located within the mandatory-account-configs section of the config

file (i.e. management, log-archive, security, operations, shared-network, perimeter, etc.).

The state machine now accepts a new input parameter, scope , which accepts the following values: FULL | NEW-ACCOUNTS | GLOBAL-OPTIONS |

ACCOUNT | OU .

when the scope parameter is supplied, you must also supply the mode parameter. At this time mode only accepts the value APPLY . To be specific

"mode":"APPLY" is mandatory when running the state machine with the "scope": parameter.

Starting the state machine with {"scope":"FULL","mode":"APPLY"} makes the state machine execute as it did in v1.2.6 and below.

The state machine targets all AWS accounts and allows changes across any section of the config file;

The blocks and overrides described in section 1.4 above remain valid;

FULL mode must be run at least once immediately after any Accelerator version upgrade. Code Pipeline automatically starts the state machine with

{"scope":"FULL","mode":"APPLY"} . If the state machine fails for any reason after upgrade, the state machine must be restarted with these

parameters until a successful execution of the state machine has completed.

Starting the state machine with {"scope":"NEW-ACCOUNTS","mode":"APPLY"} is the same as operating the state machine with the default scope as

described in the first bullet

Starting the state machine with {"scope":"GLOBAL-OPTIONS","mode":"APPLY"} restricts changes to the config file to the global-options section.

If any other portion of the config file was updated or changed, the state machine will fail;

The global options scope executes the state machine on the entire managed account footprint.

Starting the state machine with {"scope":"OU","targetOus":[X],"mode":"APPLY"} restricts changes to the config file to the specified

organizational-units section(s) defined by targetOus .

When scope=OU , targetOus becomes a mandatory parameter;

X can be any one or more valid OU names, or the value "ALL" ;

When ["ALL"] is specified, the state machine targets all AWS accounts, but only allows changes to the organizational-units section of the config

file;

When OUs are specified (i.e. ["Dev","Test"]), the state machine only targets mandatory accounts plus accounts in the specified OUs (Dev, Test), and

only allows changes to the specified OUs sections (Dev, Test) of the config file;

If any other portion of the config file was updated or changed, the state machine will fail.

Starting the state machine with {"scope":"ACCOUNT","targetAccounts":[X],"mode":"APPLY"} restricts changes to the config file to the specified

xxx-account-configs section(s) defined by targetAccounts .

When scope=ACCOUNT , targetAccounts becomes a mandatory parameter;

X can be any one or more valid account numbers, the value "NEW" , or the value "ALL" ;

When ["ALL"] is specified, the state machine targets all AWS accounts, but only allows changes to the xxx-account-configs sections of the config

file;

When specific accounts and/or NEW is specified (i.e. ["NEW", "123456789012", "234567890123"]), the state machine only targets mandatory

accounts plus the listed accounts and any newly created accounts. It also only allows changes to the specified accounts sections (New, 123456789012,

234567890123) of the config file;

If any other portion of the config file was updated or changed, the state machine will fail.

1.

•

•

•

2.

•

3.

•

•

•

4.

5.

•

•

6.

•

•

•

•

•

7.

•

•

•

•

•

2.2.3 1. State Machine Behavior and Inputs

- 39/230 -

Starting in v1.3.0, we recommend running the state machine with the parameters that most tightly scope the state machines execution to your

planned changes and minimizing the use of FULL scope execution.

should you accidentally change the wrong section of the config file, you will be protected;

as you grow and scale to hundreds or thousands of accounts, your state machine execution time will remain fast.

NOTE 1: The scope setting has no impact on SCP application, limit requests, custom tagging, or directory sharing.

NOTE 2: All comparisons for config file changes are assessed AFTER all replacements have been made. Changing variable names which result in

the same end outcome do NOT appear as a change to the config file.

1.2. Accelerator State Machine Inputs

1.2.1. REBUILD DYNAMODB TABLE CONTENTS

With the exception of the Outputs table, the contents of the Accelerator DynamoDB tables are rebuilt on every state machine execution. We recently

started depending on the Outputs DynamoDB tables to ensure the parameters in parameter store are consistently maintained in the same order as

objects are created and deleted. Should the CONTENTS of the tables be destroyed or corrupted, customers can force a rebuild of the

CloudFormation Outputs in DynamoDB by starting the state machine with the parameter:

This should be completed BEFORE running the state machine with a corrupt or empty DynamoDB table or the Accelerator is likely to reorder a

customers parameters. If the DynamoDB tables were completely destroyed, they must be recreated before running the state machine with this

parameter.

1.2.2. BYPASS ALL CONFIG FILE VALIDATION CHECKS

This parameter should be specified with extreme caution, as it bypasses all config file validation. The state machine typically has protections enabled

preventing customers from making breaking changes to the config file. Under certain conditions with the support of a trained expert, bypassing these

checks is required. Start the state machine with the parameter:

Customers are encouraged to use the specific override variables below, rather than the all-inclusive override, to ensure they only

bypasses intended config changes.

1.2.3. BYPASSING SPECIFIC CONFIG FILE VALIDATION CHECKS

Providing any one or more of the following flags will only override the specified check(s):

1.2.4. GENERATE VERBOSE LOGGING WITHIN STATE MACHINE

Added "verbose": "1" state machine input options

parameter is optional

•

•

{ "storeAllOutputs": true }

{ "overrideComparison": true }

{

 "configOverrides": {

 "ov-global-options": true,

 "ov-del-accts": true,

 "ov-ren-accts": true,

 "ov-acct-email": true,

 "ov-acct-ou": true,

 "ov-acct-vpc": true,

 "ov-acct-subnet": true,

 "ov-acct-vpc-optin": true,

 "ov-tgw": true,

 "ov-mad": true,

 "ov-ou-vpc": true,

 "ov-ou-subnet": true,

 "ov-share-to-ou": true,

 "ov-share-to-accounts": true,

 "ov-nacl": true,

 "ov-nfw": true

 }

}

•

•

2.2.3 1. State Machine Behavior and Inputs

- 40/230 -

parameter defaults to 0

1.2.5. STATE MACHINE SCOPING INPUTS

Summary of inputs, per section 1.1 above:

1.2.6. EXAMPLE OF COMBINED INPUTS

•

{ "scope": "FULL", "mode": "APPLY", "verbose": "1" }

{ "scope": "FULL", "mode": "APPLY" }

{ "scope": "NEW-ACCOUNTS", "mode": "APPLY" }

{ "scope": "GLOBAL-OPTIONS", "mode": "APPLY" }

{ "scope": "OU", "targetOus": ["ou-name", "ou-name"], "mode": "APPLY" }

{ "scope": "ACCOUNT", "targetAccounts": ["123456789012", "234567890123"], "mode": "APPLY" }

{

 "scope": "FULL",

 "mode": "APPLY",

 "configOverrides": { "ov-ou-vpc": true, "ov-ou-subnet": true, "ov-acct-vpc": true }

}

2.2.3 1. State Machine Behavior and Inputs

- 41/230 -

2.2.4 1. Multi-file Accelerator Config file and YAML Support Details

1.1. Customers would like the ability to specify their configuration in YAML. This facilitates

commenting out entire sections, which is unavailable in standard JSON

annotating aspects of configuration (e.g. cidr: "10.100.0.0/16" # We chose this for \$reason.)

aligning the Accelerator with CloudFormation, which supports JSON/YAML as input format

1.2. Customers would like the configuration file split into multiple files

one file for Global options + Mandatory accounts

one file per OU

one file for every approx. 2000 lines of workload accounts (Code Commit diff stops working at 3000 lines, allow for adding to each file)

1.3. Benefits

Easier cut/paste/comparison of OU configurations

Allow CodeCommit diff functionality to function (File currently too large)

Allow easier updates to workload accounts (simple append)

Smaller scoped updates (de-risk accidentally changing the wrong section)

Both a customer request and something the team thought was a good idea

1.4. Steps FOR YAML

The loadAcceleratorConfig functionality should no longer assume config.json as the config filename in the config repo and/or S3, instead it should

look for config.yaml and config.json

Check for the existence of config.yaml and config.json (initially in S3, but also in CodeCommit on future executions)

If both files exist, fail with an error message

Infer the file type from the extension, and parse accordingly

Any other failure should also be an error, fail with an error message

The accelerator will continue to use JSON formatting internally, if a yaml file is supplied, we are simply converting it to JSON for use by the

Accelerator

All examples throughout this document use config.json as the example, but also apply to YAML

Both JSON and YAML input files will be equally supported

Only one file format is supported across all config files, either JSON or YAML, customers can NOT mix YAML and JSON file formats

1.5. Steps For File Split

When the __LOAD keyword is encountered, search relatively (from the same location as root config file) for the file, and insert into the config tree,

recursively following __LOAD if necessary (to max depth of 2). Any file referenced in __LOAD must parse successfully in one of the two formats,

otherwise FAIL.

•

•

•

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

•

•

{

 "core": {

 "__LOAD": "ous/core.json"

 }

}

2.2.4 1. Multi-file Accelerator Config file and YAML Support Details

- 42/230 -

Note that while we will provide sensible examples, there is no prescriptive requirement for file organization within a customer's configuration,

customers can use the feature to break-out sections as is most effective for their deployment. Breaking out large repeatable sections like security

groups is a good example and could be included off the main file, an account file, or off an ou file:

Examples:

All in one (single file like today):

Split along major sections:

Max depth of 2 means config.json can load ou/dev.json, which can load global/security-groups.json.

security-groups.json CANNOT load another sub-file (unless security-groups.json was only directly loaded from config.json).

1.6. Dealing with Accelerator Automatic Config File Updates

When customers create AWS accounts directly through AWS Organizations, the Accelerator automatically updates the config file, adding these new

accounts. If a customer renames an OU we automatically update the config file. With multi-part files, how do we know what source file to update? We

require two mechanisms:

Add the following new parameters to the global-options section of the config file

filename is set to config.json , and prefix to config in a single file configuration scenario (suffix is not used)

While OU contents can be moved into __LOADED sub-files, it was decided the OU object itself must remain in the main config file

The above parameters:

are required to be in the main config file and cannot be __LOAD 'ed

Must be present or SM fails

Are used to decide where to add new accounts to the config file

Add the following new parameter to each mandatory and workload account config

1.7. Accelerator Internal Operations

when updating an account in the config file, we use the "src-filename" parameters to find and update an accounts ou , ou-path ,

account-name , and email parameters

"security-groups": ["__LOAD": "global/security-groups.json"]

1.

.
├── config.json

1.

.
├── config.json
├── ous
│ ├── core.json
│ ├── dev.json
│ └── test.json ---> could be one per ou, could only be for some ou's as determined by customer
├── accounts
│ ├── workload-accounts-group1.json
│ ├── workload-accounts-group2.json
│ ├── my-workload-accounts.json
│ └── more-accounts.json ---->we will encourage each file being as close to 2000 lines as possible (not one per account, not all in one file)
└── global
├── global-options.json
├── security-groups.json

etc

•

•

1.

 "workloadaccounts-param-filename": "accounts/more-accounts2.json",
 "workloadaccounts-prefix" : "accounts/more-accounts",
 "workloadaccounts-suffix" : 3,

•

•

•

•

•

•

2.

 "src-filename": "accounts/my-workload-accounts.json",

•

2.2.4 1. Multi-file Accelerator Config file and YAML Support Details

- 43/230 -

When creating new accounts (inserting into config file):

if the update is not going to make the file larger than 2000 lines, insert the new account into the config file "workloadaccounts-param-filename"

if the insert will push the file over 2000 lines:

create the next unused filename for the given prefix in Code Commit ({"workloadaccounts-prefix"}{"workloadaccounts-suffix"}.{customer

file format}), i.e. "accounts/more-accounts3.json"

insert the new account into the new file in it's entirety

update "workloadaccounts-param-filename" to: {"workloadaccounts-prefix"}{"workloadaccounts-suffix"}.{customer file format}

add a new load stmt to the workload-accounts section of the config file with the name {"workloadaccounts-prefix"}{"workloadaccounts-

suffix"}.{customer file format}

update "workloadaccounts-suffix" to: {"workloadaccounts-suffix"} + 1

be careful with comma's between files (JSON sections) when appending/connecting

1.8. Example

The entire main config file could be reduced to this:

1.9. Acceptance Criteria

A new customer may start an Accelerator deployment with a config.json or config.yaml, and have it deploy as expected so long as the file is

semantically correct according to structure and expected keys (and of course syntactically correct in either YAML or JSON)

Accelerator should continue to function as it does today o i.e. on startup creates repo and copies all referenced config files, not just config.json to

repo (json or YAML) o leverages config files in CodeCommit repo from this point forward (json or YAML as provided by customer) o SM runs

against the commit id of each file at the start of the SM (i.e. don't allow changes to any file during execution)

Accelerator leverages multiple config files to receive the same input parameters it previously did from one file

All accelerator functionality both ALZ and Standalone versions continue to function as previously defined

•

•

•

•

•

•

•

•

•

{

 "global-options": {

 "workloadaccounts-param-filename": "accounts/more-accounts2.json",

 "workloadaccounts-prefix": "accounts/more-accounts",

 "workloadaccounts-suffix": 3,

 "__LOAD": "global/global-options.json"

 },

 "mandatory-account-configs": {

 "__LOAD": "accounts/mandatory-accounts.json"

 },

 "workload-account-configs": {

 "__LOAD": [

 "accounts/workload-accounts1.json",

 "accounts/my-other-accounts.json",

 "accounts/workload-accounts2.json"

]

 },

 "organizational-units": {

 "core": {

 "__LOAD": "ous/core.json"

 },

 "Central": {

 "__LOAD": "ous/central.json"

 },

 "Dev": {

 "__LOAD": "ous/dev.json"

 },

 "Test": {

 "__LOAD": "ous/test.json"

 },

 "Prod": {

 "__LOAD": "ous/prod.json"

 },

 "UnClass": {

 "__LOAD": "ous/unclass.json"

 },

 "Sandbox": {

 "__LOAD": "ous/sandbox.json"

 }

 }

}

•

•

•

•

2.2.4 1. Multi-file Accelerator Config file and YAML Support Details

- 44/230 -

Customer can successfully provides multiple config files with the same result as the current one file•

2.2.4 1. Multi-file Accelerator Config file and YAML Support Details

- 45/230 -

2.2.5 1. Existing Organizations / Accounts

1.1. Considerations: Importing existing AWS Accounts / Deploying Into Existing AWS Organizations

The Accelerator can be installed into existing AWS Organizations

our early adopters have all successfully deployed into existing organizations

Existing AWS accounts can also be imported into an Accelerator managed Organization

Caveats:

Per AWS Best Practices, the Accelerator deletes the default VPC's in all AWS accounts, worldwide. The inability to delete default VPC's in pre-

existing accounts will fail the installation/account import process. Ensure default VPC's can or are deleted before importing existing accounts. On

failure, either rectify the situation, or remove the account from Accelerator management and rerun the state machine

The Accelerator will NOT alter existing (legacy) constructs (e.g. VPC's, EBS volumes, etc.). For imported and pre-existing accounts, objects the

Accelerator prevents from being created using preventative guardrails will continue to exist and not conform to the prescriptive security guidance

Existing workloads should be migrated to Accelerator managed VPC's and legacy VPC's deleted to gain the full governance benefits of the

Accelerator (centralized flow logging, centralized ingress/egress, no IGW's, Session Manager access, existing non-encrypted EBS volumes, etc.)

Existing AWS services will be reconfigured as defined in the Accelerator configuration file (overwriting existing settings)

We do NOT support any workloads running or users operating in the Organization Management (root) AWS account. The Organization

Management (root) AWS account MUST be tightly controlled

Importing existing workload accounts is fully supported, we do NOT support, recommend and strongly discourage importing mandatory accounts,

unless they were clean/empty accounts. Mandatory accounts are critical to ensuring governance across the entire solution

We've tried to ensure all customer deployments are smooth. Given the breadth and depth of the AWS service offerings and the flexibility in the

available deployment options, there may be scenarios that cause deployments into existing Organizations to initially fail. In these situations, simply

rectify the conflict and re-run the state machine.

If the Firewall Manager administrative account is already set for your organization, it needs to be unset before starting a deployment.

1.2. Process to import existing AWS accounts into an Accelerator managed Organization

Newly invited AWS accounts in an Organization will land in the root ou

Unlike newly created AWS accounts which immediately have a Deny-All SCP applied, imported accounts are not locked down as we do not want

to break existing workloads (these account are already running without Accelerator guardrails)

In AWS Organizations, select ALL the newly invited AWS accounts and move them all (preferably at once) to the correct destination OU (assuming

the same OU for all accounts)

In case you need to move accounts to multiple OU's we have added a 2 minute delay before triggering the State Machine

Any accounts moved after the 2 minute window will NOT be properly ingested, and will need to be ingested on a subsequent State Machine

Execution

This will first trigger an automated update to the config file and then trigger the state machine after a 2 minute delay, automatically importing the

moved accounts into the Accelerator per the destination OU configuration

As previously documented, accounts CANNOT be moved between OU's to maintain compliance, so select the proper top-level OU with care

If you need to customize each of the accounts configurations, you can manually update the configuration file either before or after you move the

account to the correct ou

if before, you also need to include the standard 4 account config file parameters, if after, you can simply add your new custom parameters to the

account entry the Accelerator creates

if you add your imported accounts to the config file, moving the first account to the correct ou will trigger the state machine after a 2 minutes delay.

If you don't move all accounts to their correct ou's within 2 minutes, your state machine will fail. Simply finish moving all accounts to their correct

OU's and then rerun the state machine.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.5 1. Existing Organizations / Accounts

- 46/230 -

If additional accounts are moved into OUs while the state machine is executing, they will not trigger another state machine execution, those

accounts will only be ingested on the next execution of the state machine

customers can either manually initiate the state machine once the current execution completes, or, the currently running state machine can be

stopped and restarted to capture all changes at once

Are you unsure if an account had its guardrails applied? The message sent to the state machine Status SNS topic (and corresponding email

address) on a successful state machine execution provides a list of all successfully processed accounts.

The state machine is both highly parallel and highly resilient, stopping the state machine should not have any negative impact. Importing 1 or 10

accounts generally takes about the same amount of time for the Accelerator to process, so it may be worth stopping the current execution and

rerunning to capture all changes in a single execution.

We have added a 2 min delay before triggering the state machine, allowing customers to make multiple changes within a short timeframe and have

them all captured automatically in the same state machine execution.

1.3. Deploying the Accelerator into an existing Organization

As stated above, if the ALZ was previously deployed into the Organization, please work with your AWS account team to find the best mechanism to

uninstall the ALZ solution

Ensure all existing sub-accounts have the role name defined in organization-admin-role installed and set to trust the Organization Management

(root) AWS Organization account

prior to v1.2.5, this role must be named: AWSCloudFormationStackSetExecutionRole

if using the default role (AWSCloudFormationStackSetExecutionRole) we have provided a CloudFormation stack which can be executed in each

sub-account to simplify this process

As stated above, we recommend starting with new AWS accounts for the mandatory functions (shared-network, perimeter, security, log-archive

accounts).

To better ensure a clean initial deployment, we also recommend the installation be completed while ignoring most of your existing AWS sub-

accounts, importing them post installation:

create a new OU (i.e. Imported-Accounts), placing most of the existing accounts into this OU temporarily, and adding this OU name to the

global-options\ignored-ous config parameter;

any remaining accounts must be in the correct ou, per the Accelerator config file;

install the Accelerator;

import the skipped accounts into the Accelerator using the above import process, paying attention to the below notes

NOTES:

Do NOT move any accounts from any ignored-ous to the root ou, they will immediately be quarantined with a Deny-All SCP, they need to be

moved directly to their destination ou

As stated above, when importing accounts, there may be situations we are not able to fully handle

If doing a mass import, we suggest you take a quick look and if the solution is not immediately obvious, move the account which caused the failure

back to ignored-ous and continue importing the remainder of your accounts. Once you have the majority imported, you can circle back and import

outstanding problem accounts with the ability to focus on each individual issue

The challenge could be as simple as someone has instances running in a default VPC, which may require some cleanup effort before we can

import (coming soon, you will be able to exclude single account/region combinations from default VPC deletion to gain the benefits of the rest of

the guardrails while you migrate workloads out of the default VPC)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.5 1. Existing Organizations / Accounts

- 47/230 -

2.2.6 1. How to migrate an AWS Landing Zone (ALZ) account "as is" into an AWS Secure Environment Accelerator (ASEA)

1.1. Overview

This document describes the steps to migrate an existing linked account from an AWS Landing Zone (ALZ) to an AWS Secure Environment

Accelerator (ASEA).

1.2. Prerequisites / Setup

1.2.1. CONFIRM ASEA SSO AND OU CONFIGURATION

On the ASEA, setup and run initial tests with SSO and permission sets with an account under the OU where the linked account will be migrated to.

Confirm that SSO is properly configured with permissions required for the team members whose account is being migrated. This would include

configuration of the ASEA’s AWS Managed Active Directory (MAD) which should align with how the team migrating their account has their AWS SSO

and MAD configured today.

1.2.2. SWITCH THE ALZ LINKED ACCOUNT PAYMENT METHOD TO INVOICING

If working with your AWS account team (TAM/SA) they will reach out to an internal team within AWS to have the linked account payment method

switched to invoicing. This way the customer doesn’t have to enter a credit card when making the account standalone in the upcoming steps.

1.2.3. CONFIRM CONSOLE ACCESS TO THE ALZ LINKED ACCOUNT AND ALSO TO THE EMAIL ACCOUNT

Confirm you have access to login as root to the ALZ linked account AWS console. Confirm you have access to the email account associated to the

ALZ linked account. The upcoming steps will first make the account standalone (remove from ALZ organizations) so you need to make sure you have

root access to the account. If required, you can reset the password following: https://docs.aws.amazon.com/IAM/latest/UserGuide/

id_credentials_passwords_change-root.html

1.2.4. IF AN ENTERPRISE SUPPORT (ES) CUSTOMER, THEN CONFIRM ES IS ENABLED ON THE ALZ LINKED ACCOUNT

If the ALZ management account is on Enterprise Support (ES), then make sure ES is enabled on the linked account being migrated to the ASEA. If its

not, then raise a support case to activate ES on the linked account. This is to make sure an ES support case can be created and escalated during

step 2 if any unforeseen issue occurs.

1.2.5. CONFIRM THE ALZ CODEPIPELINE IS EXECUTING SUCCESSFULLY

Make sure the ALZ CodePipeline is still running successfully. Execute the ALZ CodePipeline from the management account to make sure it runs

successfully.

AWS Console -> CodePipeline

Select “AWS-Landing-Zone-CodePipeline”

Select “Release Change”

Click on the pipeline and confirm it successfully runs through to completion

1.2.6. CONFIRM CLI ACCESS AND SETUP PYTHON AND THE AWS PYTHON SDK (BOTO3)

Confirm SSO temporary command line access from the management account with AdminAccess.

SSO login → Select linked account → “Command line or programmatic access”

Select Option 2 and add to your AWS credentials file under “[default]“

This is required as the python script in step 3 takes a “profile” parameter

Confirm you have the AWS CLI tool installed.

https://aws.amazon.com/cli/

Confirm by running a command such as “aws s3 ls”

Confirm you have python3 and the AWS python library (boto3) installed which is required in step 2 to confirm the account has been disassociated

from the landing zone correctly.

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html

•

•

•

•

•

•

•

•

•

•

•

•

2.2.6 1. How to migrate an AWS Landing Zone (ALZ) account "as is" into an AWS Secure Environment Accelerator (ASEA)

- 48/230 -

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_change-root.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_change-root.html
https://aws.amazon.com/cli/
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html

1.3. Landing Zone - Disassociate the account from the ALZ

Login to the ALZ management account, and go to “Service Catalog” -> “Provisioned products”

Select “Access Filter” -> “Account” to see a list of the account products

1.3.1. SELECT THE PRODUCT FOR THE SPECIFIC LINKED ACCOUNT

Put the linked account name in the provisioned products search bar

This will narrow down the list and show a product name “AWS-Landing-Zone-Account-Vending-Machine” with a name “lzapplicaitons*”

Select that product and then “Actions->Terminate”

1.3.2. CONFIRM THE PRODUCT SUCCESSFULLY TERMINATES

The provisioned product entry will show a status of “Under change”

You can also verify by going to CloudFormation→Stacks and you will see “DELETE IN PROGRESS” for the AVM Template stack being deleted.

Go to the Resources tab to see the deleted resources associated to this stack.

Once the provisioned product no longer says “Under change” move to the next step.

Please note, this can take 1-2 hours.

1.3.3. GO TO THE LINKED ACCOUNT (ASSUME ROLE)

From the management account, assume the role “AWSCloudFormationStackSetExecutionRole” to the linked account

or optionally, SSO with console access to that account

1.3.4. UNDER “CLOUDFORMATION” VERIFY THAT THE ALZ STACKS (STACKSETS FROM ALZ MGMT) WERE DELETED

There should be no stack left in the linked account with the prefix “StackSet-AWS-Landing-Zone-Baseline*". For example:

StackSet-AWS-Landing-Zone-Baseline-CentralizedLoggingSpoke-

StackSet-AWS-Landing-Zone-Baseline-EnableConfigRules-

StackSet-AWS-Landing-Zone-Baseline-EnableNotifications-

StackSet-AWS-Landing-Zone-Baseline-EnableConfigRulesGlobal-

StackSet-AWS-Landing-Zone-Baseline-EnableConfig-

StackSet-AWS-Landing-Zone-Baseline-ConfigRole-

StackSet-AWS-Landing-Zone-Baseline-IamPasswordPolicy-

StackSet-AWS-Landing-Zone-Baseline-SecurityRoles-

StackSet-AWS-Landing-Zone-Baseline-EnableCloudTrail-

1.3.5. VERIFY THAT THE ACCOUNT IS READY TO BE INVITED AND BASELINED BY THE ASEA

You need to ensure that resources don’t exist in the default VPC, there is no config recorder channel, no CloudTrail Trail and STS is active in all

regions.

This can be done manually, but ideally use this python script that can be run as well to automate the verification

https://github.com/paulbayer/Inventory_Scripts/blob/mainline/ALZ_CheckAccount.py

mkdir test; cd test

git clone https://github.com/paulbayer/Inventory_Scripts.git

python3 ALZ_CheckAccount.py -a LINKED ACCOUNT_HERE -p default

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.6 1. How to migrate an AWS Landing Zone (ALZ) account "as is" into an AWS Secure Environment Accelerator (ASEA)

- 49/230 -

https://github.com/paulbayer/Inventory_Scripts/blob/mainline/ALZ_CheckAccount.py
https://github.com/paulbayer/Inventory_Scripts.git

It will run through 5 steps and output the following. If you were to run this script before the “terminate” step above is complete you would have

warnings in steps 2 and 3 below.

Step 0 completed without issues

Checking account 111122223333 for default VPCs in any region

Step 1 completed with no issues

Checking account 111122223333 for a Config Recorders and Delivery Channels in any region

Step 2 completed with no issues

Checking account 111122223333 for a specially named CloudTrail in all regions

Step 3 completed with no issues

Checking account 111122223333 for any GuardDuty invites

Step 4 completed with no issues

Checking that the account is part of the AWS Organization.

Step 5 completed with no issues

We've found NO issues that would hinder the adoption of this account ****

1.4. Landing Zone (ALZ) - Remove the account from the ALZ organizations and make standalone

Removing the account from the ALZ organizations and making it standalone is required so it can be invited into the ASEA organization.

1.4.1. READ THE FOLLOWING SUMMARY/CONSIDERATIONS

https://aws.amazon.com/premiumsupport/knowledge-center/organizations-move-accounts/

1.4.2. VERIFY ACCESS

As stated in the previous sections, verify you have a mechanism to access the account post leaving the ALZ organization

Former SSO roles will no longer function nor will the “AWSCloudFormationStackSetExecutionRole” role as it will have a trust relationship to the

ALZ management account.

Confirm the root credentials have been recovered and are usable

As an alternative, confirm access with a new role/IAM user with Admin permissions on the account

1.4.3. VERIFY BILLING FLIPPED TO INVOICING

As stated in the previous sections, verify the account payment method has been flipped to “invoicing” to avoid having to enter a Credit Card when

going standalone. This can be done working with your AWS account team who will coordinate internally, or by raising a support case describing the

use case.

1.4.4. REMOVE THE ACCOUNT FROM THE ORGANIZATIONS AND MAKE STANDALONE

Follow the instructions on the following link to remove the account

The short version is select the account from the ALZ mgmt account Organizations and select "remove"

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_accounts_remove.html

https://aws.amazon.com/blogs/security/aws-organizations-now-supports-self-service-removal-of-accounts-from-an-organization

Note, when moving the account standalone do not select Enterprise Support. You shouldn't get a popup dialog asking for a Credit Card and the

Support level since the account should have been moved to invoicing. Support can be reenabled on the linked account once it’s invited into the

ASEA organization.

1.5. Accelerator - Invite the account into its organization

1.5.1. FROM THE ASEA MGMT ACCOUNT, SEND AN INVITE TO THE STANDALONE ACCOUNT

Follow the instructions on the following link to invite the account

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.6 1. How to migrate an AWS Landing Zone (ALZ) account "as is" into an AWS Secure Environment Accelerator (ASEA)

- 50/230 -

https://aws.amazon.com/premiumsupport/knowledge-center/organizations-move-accounts/
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_accounts_remove.html
https://aws.amazon.com/blogs/security/aws-organizations-now-supports-self-service-removal-of-accounts-from-an-organization

The short version is go to the ASEA mgmt account organizations and select "Add an account" -> "Invite existing account" -> "enter the linked

account account ID"

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_accounts_invites.html

1.5.2. IN THE FORMER ALZ ACCOUNT, ACCEPT THE INVITATION

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_accounts_invites.html#orgs_manage_accounts_accept-decline-invite

1.5.3. KEEP THE LINKED ACCOUNT AT THE ROOT LEVEL OF THE ORGANIZATIONS

Verify access to the linked account using your root login credentials

If you had created an IAM role/user with Admin permissions, then verify access as well

1.5.4. ACTIVATE ENTERPRISE SUPPORT (ES) ON THIS LINKED ACCOUNT

If ES is enabled on the ASEA management account, open a support case to enable ES on this linked account

Go to the Support center and create a billing support case with "Account" and "Activation"

Subject "Requesting ES enablement on linked account"

Body "Requesting ES enablement on linked account "

Your AWS TAM can escalate the case with the support team if it’s time sensitive.

This is to make sure an ES support case can be created and escalated during the next steps if any unforeseen issue occurs.

1.5.5. UPDATE (OR ADD) THE ORGANIZATION ADMING ROLE SO ONE CAN ASSUME THE ROLE INTO THE LINKED ACCOUNT

Login to the linked account which just joined the organization.

Create a new Organization Admin role, as defined in the customers config file: "organization-admin-role": "OrganizationAccountAccessRole".

With newer customers the default is "OrganizationAccountAccessRole, with older customers it is "AWSCloudFormationStackSetExecutionRole".

If "AWSCloudFormationStackSetExecutionRole" then you can edit the trust relationship directly

Go to IAM -> Role -> AWSCloudFormationStackSetExecutionRole

Update the trust relationship to have the management account ID of the ASEA (instead of the account ID of the previous ALZ)

Verify that you can assume this role from the management account into the linked account

1.6. Accelerator - Move the linked account from the top level root OU into the appropriate OU managed by the ASEA

1.6.1. PLAN WHAT OU THIS ACCOUNT WILL BE MOVED INTO

Option 1 - Create a new OU and move the account into that OU

Before the migration, the team would have created a new OU (ie-similar to the sandbox OU).

This would be needed if they need to isolate this account from TGW attachments/Networking and want to keep it isolated.

The state machine will run and start to baseline the account.

It will create a new VPC and deploy resources using CFN such as Config, CloudTrail, etc.

Note, if the OU is setup similar to the sandbox OU it does not provide access to the shared VPCs that have the TGW attachments.

Creating a new OU also requires adding that new OU and the OU persona to the config file in advance of the next state machine execution.

Option 2 - Move account into an existing OU (ie-prod)

The state machine will run and start to baseline the account.

It will create a new VPC and deploy resources using CFN such as Config, CloudTrail, etc.

The customers existing VPC will remain, as a 2nd DETACHED VPC.

Mote. if it is non-compliant to security rules, it remains non-compliant and needs to be cleaned up and brought into compliance

If the VPC is compliant and it has unique IP addresses, it could be attached to the TGW.

1.6.2. MOVE THE ACCOUNT FROM THE ROOT OU TO THE CORRECT OU

THIS CANNOT BE EASILY UNDONE - MAKE SURE YOU MOVE TO THE CORRECT OU

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.6 1. How to migrate an AWS Landing Zone (ALZ) account "as is" into an AWS Secure Environment Accelerator (ASEA)

- 51/230 -

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_accounts_invites.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_accounts_invites.html#orgs_manage_accounts_accept-decline-invite

Follow the instructions on the following link to move the account to the correct OU

The short version is go to the ASEA management account organizations and "select the account" -> "actions" -> "move" -> "select the correct OU"

NOTE: The ASEA state machine will automatically start within 1-2 minutes of the account being moved into the OU

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_ous.html#move_account_to_ou

Verify that the ASEA main state machine (under AWS->Step Functions) is triggered and runs cleanly (~30-45 minutes)

1.7. Accelerator (ASEA) - Verify access control with roles, SSO, etc

Update and verify SSO and permission sets for the linked account now part of the ASEA

Verify you still have access to the linked account via root (or other mechanisms)

Verify you still can assume the operations role into the linked account

1.8. Landing Zone - Close down the ALZ core accounts and then the management account

Once all workloads have been migrated from the ALZ to the ASEA, then you may decide to shutdown your ALZ.

1.8.1. CLOSE DOWN THE ALZ LINKED ACCOUNTS

Close all the linked accounts “as is” without making them standalone

This will be the ALZ core linked accounts, but you might have some remaining workload accounts you decided not to migrate to the ASEA.

https://aws.amazon.com/premiumsupport/knowledge-center/close-aws-account

The management account will remain with organizations and the core accounts will show as suspended for 90 days.

1.8.2. CLOSE DOWN THE ALZ MANAGEMENT ACCOUNT

After 90 days, the suspended linked accounts will be completely closed

Go to the root account and turn off Organizations and then close the root account

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.6 1. How to migrate an AWS Landing Zone (ALZ) account "as is" into an AWS Secure Environment Accelerator (ASEA)

- 52/230 -

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_ous.html#move_account_to_ou
https://aws.amazon.com/premiumsupport/knowledge-center/close-aws-account

2.3 Upgrades

2.3.1 1. Accelerator Upgrade Guide

1.1. General Upgrade Considerations

Due to some breaking dependency issues, customers can only upgrade to v1.3.8 or above (older releases continue to function, but cannot be

installed).

While an upgrade path is planned, customers with a standalone Accelerator installation can upgrade to v1.5.x but need to continue with a

standalone installation until the Control Tower upgrade option becomes available.

Always compare your configuration file with the config file from the release you are upgrading to in order to validate new or changed parameters or

changes in parameter types / formats.

do NOT update to the latest firewall AMI - see the last bullet in section 1.8. Other Operational Considerations of the installation guide

do NOT update the organization-admin-role - see item 2 in section 1.3.7. Other

do NOT update account-keys (i.e. existing installations cannot change the internal values to management from master)

do NOT make changes outside those required for the upgrade (those stated in the release notes or found through the comparison with the sample

config file(s)). Customers wishing to change existing Accelerator configuration should either do so before their upgrade, ensuring a clean/

successful state machine execution, or after a successful upgrade.

The Accelerator name and prefix CANNOT be changed after the initial installation

Customers which customized any of the Accelerator provided default configuration files (SCPs, rsyslog config, ssm-documents, iam-policies, etc.)

must manually merge the latest Accelerator provided updates with deployed customizations:

it is important customers assess the new defaults and integrate them into their custom configuration, or Accelerator functionality could break or

Accelerator deployed features may be unprotected from modification

if customers don't take action, we continue to utilize the deployed customized files (without the latest updates)

The below release specific considerations need to be cumulatively applied (an upgrade from v1.2.3 to v1.2.5 requires you to follow both v1.2.4 and

v1.2.5 considerations)

1.2. Release Specific Upgrade Considerations:

Upgrades to v1.5.1-a and above from v1.5.0 or v1.5.1 :

Do not add the parameter: "ssm-inventory-collection": true to OUs or accounts which already have SSM Inventory configured or the state

machine will fail

Follow the standard upgrade steps detailed in section 1.3 below

v1.5.1 was replaced by v1.5.1-a and is no longer supported for new installs or upgrades

Upgrades to v1.5.0 and v1.5.1-a and above from v1.3.8 through v1.3.9 :

We recommend upgrading directly to v1.5.1-a

Due to the size and complexity of this upgrade, we require all customers to upgrade to v1.3.8 or above before beginning this upgrade

While v1.5.0 supports Control Tower for NEW installs, existing Accelerator customers CANNOT add Control Tower to their existing installations at

this time (planned enhancement for 22H1)

Attempts to install Control Tower on top of the Accelerator will corrupt your environment (both Control Tower and the Accelerator need minor

enhancements to enable)

The v1.5.x custom upgrade guide can be found here

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.3 Upgrades

- 53/230 -

Upgrades to v1.3.9 and above from v1.3.8-b and below :

All interface endpoints containing a period must be removed from the config.json file either before or during the upgrade process

i.e. ecr.dkr, ecr.api, transfer.server, sagemaker.api, sagemaker.runtime in the full config.json example

If you remove them on a pre-upgrade State Machine execution, you can put them back during the upgrade, if you remove them during the

upgrade, you can put them back post upgrade.

Upgrades to v1.3.3 and above from v1.3.2 and below :

Requires mandatory config file schema changes as documented in the release notes.

These updates cause the config file change validation to fail and require running the state machine with the following input to override the

validation checks on impacted fields: {"scope": "FULL", "mode": "APPLY", "configOverrides": {"ov-ou-vpc": true, "ov-ou-subnet":

true, "ov-acct-vpc": true }}

Tightens VPC interface endpoint security group permissions and enables customization. If you use VPC interface endpoints that requires ports/

protocols other than TCP/443 (such as email-smtp), you must customize your config file as described here

Upgrades from v1.3.0 and below :

Please review the Release Specific Upgrade Considerations from ASEA v1.5.0 or below, they were removed from this release.

1.3. Summary of Upgrade Steps (all versions except v1.5.0)

Login to your Organization Management (root) AWS account with administrative privileges

Either: a) Ensure a valid Github token is stored in secrets manager (per the installation guide), or b) Ensure the latest release is in a valid branch of

CodeCommit in the Organization Management account

Review and implement any relevant tasks noted in the General Upgrade Considerations section above

Update the config file in CodeCommit with new parameters and updated parameter types based on the version you are upgrading to (this is important

as features are iterating rapidly)

An automated script is available to help convert config files to the new v1.5.0 format

Compare your running config file with the sample config file from the latest release

Review the Config file changes section of the release notes for all Accelerator versions since your current deployed release

If you customized any of the other Accelerator default config files by overriding them in your S3 input bucket, merge the latest defaults with your

customizations before beginning your upgrade

Download the latest installer template (AcceleratorInstallerXYZ.template.json or AcceleratorInstallerXXX-CodeCommit.template.json) from

the Assets section of the latest release

Do NOT accidentally select the ASEA-InitialSetup CloudFormation stack below

If you are replacing your GitHub Token:

Take note of the AcceleratorName , AcceleratorPrefix , ConfigS3Bucket and NotificationEmail values from the Parameters tab of your deployed

Installer CloudFormation stack (ASEA-what-you-provided)

Delete the Installer CloudFormation stack (ASEA-what-you-provided)

Redeploy the Installer CloudFormation stack using the template downloaded in step 6, providing the values you just documented (changes to

AcceleratorName or AcceleratorPrefix are not supported)

The pipeline will automatically run and trigger the upgraded state machine

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

•

•

•

5.

6.

7.

8.

•

•

•

•

2.3.1 1. Accelerator Upgrade Guide

- 54/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/releases
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/SAMPLE_CONFIGS/sample_snippets.md
https://github.com/aws-samples/aws-secure-environment-accelerator/releases
https://github.com/aws-samples/aws-secure-environment-accelerator/releases

If you are using a pre-existing GitHub token, or installing from CodeCommit:

Update the Installer CloudFormation stack using the template downloaded in step 5, updating the GithubBranch to the latest release (eg. release/

v1.5.1-a)

Go to AWS CloudFormation and select the stack: ASEA-what-you-provided

Select Update, select Replace current template, Select Upload a template file

Select Choose File and select the template you downloaded in step 6 (AcceleratorInstallerXYZ.template.json or AcceleratorInstallerXXX-

CodeCommit.template.json)

Select Next, Update GithubBranch parameter to release/vX.Y.Z where X.Y.Z represents the latest release

Click Next, Next, I acknowledge, Update

Wait for the CloudFormation stack to update (Update_Complete status) (Requires manual refresh)

Go To Code Pipeline and Release the ASEA-InstallerPipeline

9.

•

•

•

•

•

•

•

•

2.3.1 1. Accelerator Upgrade Guide

- 55/230 -

2.3.2 1. Accelerator v1.5.x Custom Upgrade Instructions

1.1. Overview

The upgrade from v1.3.8/v1.3.9 to v1.5.x is generally the same as any previous Accelerator upgrades, with a couple of key differences:

the magnitude of this release has resulted in a requirement for significant updates to the config file

we have provided a script to assist with this process. A manual verification of the changes and customer custom updates are often still required.

we are re-aligning the OU structure with AWS guidance and that of AWS Control Tower (optional, but highly recommended)

the core OU is being split into a "Security" OU and an "Infrastructure" OU

we've added the capability to manage your IP addresses in DynamoDB, rather than with the config file

this includes the ability to dynamically allocate CIDR ranges to VPCs and subnets

more information on this features design can be found on this ticket

the config file conversion script will:

update your config file in a manner that supports both CIDR management schemes (but continues to leverage the previous mechanism)

copy your currently configured CIDR ranges into the appropriate DynamoDB tables (optional, but recommended)

you can change your IP address mechanism for any VPC at any time

customers can mix and match IP address management mechanisms as they choose (provided , lookup , and dynamic)

1.2. Upgrade Caveats

While an upgrade path is planned, customers with a Standalone Accelerator installation can upgrade to v1.5.x but need to continue with a

Standalone installation until the Control Tower upgrade option becomes available.

The script to assist with config file conversion and DynamoDB population only supports single file json based config files, customers that leverage

YAML and/or multi-part config files, have several options:

manually update your yaml or multi-part json config file to reflect the config file format for the latest release (similar to all previous upgrades)

use the config.json file found in the raw folder of your CodeCommit repo to run the conversion script

this version of the config file has resolved all variables with their final values, all variables will be removed from config.json in this scenario

the new config file can be converted back to json/multi-part format before being placed back into your CodeCommit repository

or it could be used to simply validate the changes you made using option a

do not manually update the config file in the raw folder, as it will be overwritten based on the json or yaml file in the root of your repository

use a 3rd party tool to manually convert your yaml / multi-part config files to a single file json file to run the conversion script

the new config file can be converted back to json/multi-part format before being placed back into your CodeCommit repository

Config files which are significantly different than the example config files may not be properly converted. This includes config files which use different

mandatory account keys or renamed the core OU.

This guide and its examples assume the existing accelerator deployment uses the PBMMAccel- accelerator prefix, if a different prefix is used on the

existing installation, it is important it is specified when execution section 1.6 below.

1.3. Config File Conversion

You must first upgrade to Accelerator v1.3.8 or v1.3.9

Login to your AWS Organization Management account

Pull your current config.json file from CodeCommit and save as a text file

Locate the python conversion script and review its readme here

To convert your configuration file execute: (completely offline process)

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

•

•

•

•

•

•

•

•

3.

4.

•

•

•

•

•

2.3.2 1. Accelerator v1.5.x Custom Upgrade Instructions

- 56/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/issues/494
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/Custom-Scripts/Update-Scripts/v1.3.8_to_v1.5.0

python update.py --Region ca-central-1 --LoadConfig --ConfigFile config.json

This will output a new config file named: update-config.json

Save both the original v13.8 and the new v1.5.0 config files for future reference/use

After conversion, we recommend running the updated config file back prettier to simplify file comparisons

While the conversion script often does much of the heavy lifting, we still require customers to manually verify the changes and make manual

adjustments as appropriate:

If you use a relatively standard config file you MAY not need to make any changes manually

Ensure the value of account-name for the Organization Management account matches the actual account name of the Organization management

account (the account key is generally either management or master).

we recommend you change your rdgw-instance-type and rsyslog-instance-type from t2.to t3. (they will auto-replace on the next instance

refresh) (Optional).

optionally remove the "API_GW_EXECUTION_LOGGING_ENABLED" config rule throughout, as it overlaps with an identical Security Hub config rule.

we added the capability to deploy a Config aggregator in any of the central services accounts (i.e. Log-archive, Security, Operations), by adding

"config-aggr": true to either: central-security-services , central-operations-services , or central-log-services . The existing

aggregator in the Org management account will remain. Do not set it in all 3 sections, as AWS only supports a maximum of 3 config aggregators.

the optional attribute endpoint-port-orverides has been properly renamed to endpoint-port-overrides . If you have the endpoint-port-

orverides in your config file you must rename it to endpoint-port-overrides .

the new example config files also introduced several new internally resolvable variables (${CONFIG::OU_NAME} and ${CONFIG::VPC_NAME}), which

when used thoughtfully along with the new dynamic CIDR feature, enables multi-part config file customers to define the VPCs for multiple OU's in

a single shared nested config file. These new variables should be ignored during an upgrade.

the accelerator supports 3 types of CIDR ranges provided , lookup , and dynamic . The upgrade script sets the cidr-src to provided , meaning

it uses the CIDR ranges provided in the config file, as per the previous release. The upgrade script also adds the additional required fields (pool

and size) to every CIDR range defined in the config file to leverage the lookup type, but when set to provided these fields are NOT required

and could be removed. They were added by the script for the sole purpose of making it easy to switch from provided to lookup in future. Once a

customer switches to lookup , the cidr\value field is no longer used and can be removed from the config file. The cidr-src for should remain

set at provided during upgrade.

do not add the cidr-pools section to the config file during or before the upgrade, this section is only used for new installations.

New description fields have been added to the config file to help provide context to certain objects. These will be used by a future GUI that is under

development, and serve no functional purpose at this time. Customers can alter this text as they please.

Most of the example config files have been converted to dynamic cidr-src as it provides simplier CIDR management for new customers. Two

example config files ending in -oldIP.json have been maintained to aid upgrading customers in config file comparison.

Be advised - in v1.5.0 we restructured the SCPs based on a) customer requests, and b) the addition of Control Tower support for new installs.

customers are responsible for reviewing the SCPs to ensure they have not been altered in a manner that no longer meets an organizations

security requirements;

we reorganized and optimized our SCP's from 4 SCP files down to 3 SCP files, without removing any protections or guardrails;

these optimizations have resulted in minor enhancements to the SCP protections and in some cases better scoping;

the first two SCP files (Part-0 and Part-1) contain the controls which protect the integrity of the Accelerator itself;

the third file (Sensitive, Unclass, Sandbox) contains customer data protection specific guardrails, which may change based on workload data

classification or customer profiles and requirements;

this frees the fourth SCP for use by Control Tower, or for use by customers for custom guardrails (Standalone installs only). As Control Tower

leverages 2 SCP files on the Security OU, we have moved some of our SCP's to the account level (Control Tower installations only).

The script and upgrade instructions above do not include the new config file parameters added in v1.5.1+. These new parameters can be added

either during or after the upgrade. New parameters include: "rdgw-enforce-imdsv2": true , "rsyslog-enforce-imdsv2": true , "ssm-

inventory-collection": true on each ou, and "dynamic-s3-log-partitioning": [{values}]

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.3.2 1. Accelerator v1.5.x Custom Upgrade Instructions

- 57/230 -

1.4. Upgrade process

Before proceeding with your upgrade please review the General and Release Specific Upgrade Considerations in the Upgrade Guide

upgrades directly from v1.3.8 need to ensure they include the extra step required for v1.3.9 upgrades (removal of endpoints with periods)

Login to your AWS Organization Management account, in your home or default region

Place your updated and validated config file back in the root folder of your CodeCommit repository

json, yaml and multi-part config files continue to be supported

Change to the us-east-1 region and open CloudWatch

Select Rules under events in the left navigation pane

Select the PBMMAccel-MoveAccount_rule , select actions , select Disable

Select the PBMMAccel-PolicyChanges_rule , select actions , select Disable

Open AWS Organizations

Select the core OU and rename it to Security (case sensitive) (i.e. Actions, Rename)

In the Root ou, create a new OU named `Infrastructure (case sensitive) (i.e. Actions, Create new)

Expand the Security OU, select all EXCEPT the security , log-archive , and Organization Management account

(i.e. the Operations , Perimeter , and SharedNetwork accounts)

Select Actions, Move, then select the newly created Infrastructure OU (note these accounts temporarily missing guardrails)

NOTE: the key to this being a possible move/change, is the new Infrastructure OU is defined identically to the old core OU. Typically you

CANNOT move accounts between OU's without breaking something and violating security guardrails.

Select Policies from the left navigation pane, then Service COntrol Policies

Click the PBMMAccel-Guardrails-Part-2 policy, and Select Targets

Detach the policy from ALL OUs

Change to the us-east-1 region and open CloudWatch

Select Rules under events in the left navigation pane

Select the PBMMAccel-MoveAccount_rule , select actions , select Enable

Select the PBMMAccel-PolicyChanges_rule , select actions , select Enable

Follow the Standard Upgrade instructions from the section Summary of Upgrade Steps (all versions) of the Installation and Upgrade guide,

repeated verbatim below for ease of reference

1.5. "Summary of Upgrade Steps (all versions)" (Copied from upgrade guide)

Login to your Organization Management (root) AWS account with administrative privileges

Either:

a) Ensure a valid Github token is stored in secrets manager, or

b) Ensure the latest release is in a valid branch of CodeCommit in the Organization Management account. See this (section) of the installation guide for

more details.

Review and implement any relevant tasks noted in the upgrade consideration sections (sections 1.1 and 1.2) of the Upgrade Guide

Update the config file in CodeCommit with new parameters and updated parameter types based on the version you are upgrading to (this is important

as features are iterating rapidly)

An automated script is available to help convert config files to the new v1.5.0 format

Compare your running config file with the sample config file from the latest release

Review the Config file changes section of the release notes for all Accelerator versions since your current deployed release

If you customized any of the other Accelerator default config files by overriding them in your S3 input bucket, merge the latest defaults with your

customizations before beginning your upgrade

Download the latest installer template (AcceleratorInstallerXYZ.template.json or AcceleratorInstallerXXX-CodeCommit.template.json) from

the Assets section of the latest release

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

•

•

•

5.

6.

2.3.2 1. Accelerator v1.5.x Custom Upgrade Instructions

- 58/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/releases
https://github.com/aws-samples/aws-secure-environment-accelerator/releases

Do NOT accidentally select the PBMMAccel-InitialSetup CloudFormation stack below

If you are replacing your GitHub Token:

Take note of the AcceleratorName , AcceleratorPrefix , ConfigS3Bucket and NotificationEmail values from the Parameters tab of your deployed

Installer CloudFormation stack (PBMMAccel-what-you-provided)

Delete the Installer CloudFormation stack (PBMMAccel-what-you-provided)

Redeploy the Installer CloudFormation stack using the template downloaded in step 6, providing the values you just documented (changes to

AcceleratorName or AcceleratorPrefix are not supported)

The pipeline will automatically run and trigger the upgraded state machine

If you are using a pre-existing GitHub token, or installing from CodeCommit:

Update the Installer CloudFormation stack using the template downloaded in step 5, updating the GithubBranch to the latest release (eg. release/

v1.5.0)

Go to AWS CloudFormation and select the stack: PBMMAccel-what-you-provided

Select Update, select Replace current template, Select Upload a template file

Select Choose File and select the template you downloaded in step 6 (AcceleratorInstallerXYZ.template.json or AcceleratorInstallerXXX-

CodeCommit.template.json)

Select Next, Update GithubBranch parameter to release/vX.Y.Z where X.Y.Z represents the latest release

Click Next, Next, I acknowledge, Update

Wait for the CloudFormation stack to update (Update_Complete status) (Requires manual refresh)

Go To Code Pipeline and Release the PBMMAccel-InstallerPipeline

1.6. Post Upgrade Follow-up Tasks for v1.5.x Upgrade

Once the State Machine finishes in AWS Organizations, delete the PBMMAccel-Guardrails-Part-2 SCP, as we do not remove policies from

Organizations given they could be used by customers for other purposes.

Optionally, populate DynamoDB with your allocated CIDR ranges:

You must perform the following steps if you plan to:

move from "cidr-src": "provided" to "cidr-src": "lookup" for your existing cidr blocks; or

dynamically assign CIDR ranges to new VPCs using pools that overlap with existing VPC's currently defined in your config file.

this step populates the DynamoDB tables (PBMMAccel-cidr-vpc-assign and PBMMAccel-cidr-subnet-assign) with your EXISTING utilized CIDR

ranges using the upgrade script a second time after the upgrade is complete.

Using the converted version of your config file (update-config.json)

Validate you are happy with the pool names assigned to each VPC and subnet throughout the config file. Update as appropriate, pool names can

be any alpha-numeric string, but a subnets pool must match one of its VPCs pools.

Locate the python conversion script and review its readme here

To load DynamoDB with your CIDR ranges, execute: (online, requires credentials to the Organization Management account)

python update.py --Region ca-central-1 --LoadDB --ConfigFile update-config.json --AcceleratorPrefix PBMMAccel-

Note the use of the --LoadDB switch, the UPDATED config filename, and that the Accelerator prefix is specified

If you run this command using your v1.3.8 or v1.3.9 config file, the \cidr\pool: values will be improperly assigned in DynamoDB.

In the Organization Management account, in DynamoDB, select Items, and Verify that the tables have been properly populated.

the script should have populated the following two DynamoDB tables: PBMMAccel-cidr-vpc-assign and PBMMAccel-cidr-subnet-assign with all

your existing vpc and subnet assignments.

if you plan to dynamically assign CIDR ranges for any new VPCs, you need to manually create the CIDR pools by adding new item(s) to the

DynamoDB Table PBMMAccel-cidr-pool . The PBMMAccel-cidr-pool table stores CIDR ranges to select from for new CIDR assignments. This

table works together with the other two DynamoDB tables to track, assign and maintain non-overlapping CIDR ranges based on a pool name and

region.

7.

8.

•

•

•

•

9.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.3.2 1. Accelerator v1.5.x Custom Upgrade Instructions

- 59/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/Custom-Scripts/Update-Scripts/v1.3.8_to_v1.5.0

- where `id` is any unique text, `cidr` is the main cidr block from which VPC cidrs are taken. `region` is the AWS region where the pool is used. `pool` is the

name of the pool

NOTES:

You can populate the cidr-pools section of the config file/DynamoDB with values that overlap with the existing assigned ranges in your config

file. In this situation, it is CRITICAL that you execute this entire process, to avoid issueing duplicate or overlapping CIDR ranges with those already

issued. Alternatively, leverage new unique ranges when populating the cidr-pools .

cidr-pools only needs to be populated when a VPC has a cidr-src set to dynamic .

Optionally, change all the cidr-src values throughout your config file to lookup , and remove all the cidr\value fields. Once changed, CIDR

values will be provided by DynamoDB. Switching to lookup requires completion of the previous optional step to first load DynamoDB.

run the state machine with the input parameters {"scope": "FULL","mode": "APPLY","verbose": "0"}

during the state machine execution, the Accelerator will compare the values returned by DynamoDB with the values from the previous successful

state machine execution. If the DynamoDB values were incorrectly populated, the state machine will catch it with a comparison failure message

and gracefully fail.

Sample DynamoDB JSON to add an entry to the `PBMMAccel-cidr-pool` table:

{

 "id": {

 "S": "1"

 },

 "cidr": {

 "S": "10.0.0.0/13"

 },

 "region": {

 "S": "ca-central-1"

 },

 "pool": {

 "S": "main"

 }

}

•

•

•

•

•

2.3.2 1. Accelerator v1.5.x Custom Upgrade Instructions

- 60/230 -

2.4 Functionality

2.4 Functionality

- 61/230 -

2.4.1 Accelerator Service List

Services

This table indicates whether services are leveraged and/or orchestrated by the Accelerator.

2.4.1 Accelerator Service List

- 62/230 -

CATEGORY SERVICE LEVERAGED ORCHESTRATED

Compute

AWS Lambda X

Amazon Elastic Compute Cloud (EC2) X

Monitoring &

Alerts

Amazon CloudTrail X

AWS Config X

Amazon CloudWatch X X

Amazon EventBridge X X

Amazon Simple Notification Service (SNS) X

AWS Budgets X

Systems Manager Inventory X

Infrastructure

AWS CodeCommit X

AWS CodeBuild X

AWS CodePipeline X

AWS CloudFormation X

AWS Cloud Development Kit (CDK) / Software Development Kit

(SDK)

X

AWS Step Functions X

Amazon Kinesis Data Stream X

Amazon Kinesis Data Firehose X

Amazon Simple Queue Service (SQS) X

Data

Amazon Simple Storage Service (S3) X X

Amazon DynamoDB X

Amazon Elastic Container Registry (ECR) (incl. ECR Public) X

Systems Manager Parameter Store X X

AWS Secrets Manager X

Networking

Amazon Virtual Private Cloud (VPC) X

AWS Transit Gateway X

AWS PrivateLink X

Elastic Load Balancer (ELB) (incl. ALB, NLB, GWLB) X

Route53 X

Route53 Resolver X

2.4.1 Accelerator Service List

- 63/230 -

If we missed a service, let us know!

CATEGORY SERVICE LEVERAGED ORCHESTRATED

Management

AWS Organizations X X

AWS Resource Access Manager (RAM) X

AWS Identity and Access Management (IAM) X X

AWS Single Sign-On (SSO) X

AWS Directory Service (incl. AWS Managed AD and AD

Connector)

X

AWS Control Tower X X

AWS IAM Access Analyzer X

AWS Cost and Usage Reports X

AWS Service Quotas X

Security

AWS GuardDuty X

AWS Security Hub X

Amazon Macie X

Systems Manager Automation X

Systems Manager Session Manager X

AWS Key Management Service (KMS) X X

AWS Security Token Service (STS) X

AWS Firewall Manager X

AWS Network Firewall X

AWS Certificate Manager (ACM) X

Third-Party

Fortinet FortiGate and FortiManager (Firewall & Mgmt) X

Checkpoint CloudGuard and Manager (Firewall & Mgmt) X

rsyslog on Amazon Linux 2 X

Windows Remote Desktop Gateway Bastion X

2.4.1 Accelerator Service List

- 64/230 -

2.4.2 1. Accelerator Pricing

1.1. Overview

The AWS Secure Environment Accelerator (ASEA) is available free of charge as an open source solution on GitHub. You are responsible for the

cost of the AWS services enabled, configured, and deployed by the solution.

The ASEA solution enables, configures and deploys two types of AWS services: services leveraged by the ASEA itself to deliver its capabilities; and

services orchestrated by the ASEA to help create a secure multi-account AWS foundation for your users and workloads.

The pricing for services leveraged by the ASEA are relatively consistent and small. The pricing for services orchestrated by the ASEA can vary

dramatically based on the underlying architecture, services and features selected by a customer through the customizable configuration file.

Most of the provided example ASEA configuration files (except ultra-lite) build a highly available and scalable multi-datacenter environment with

hyperscale routing and enterprise grade security worldwide, something that would cost tens of millions of dollars on-premises and still not achieve the

same results.

As shown below, different configuration files can dramatically change the monthly cost of running the solution from $30/month, to $1500/month, to

$2400/month, to over $3700/month. The price of the deployed solution is 100% dependent on what the customer deploys, and not on the Accelerator

automation engine itself. While the example deployment(s) may appear expensive when used solely for testing in a personal account, they typically

only represent a very small percentage of a production customers AWS spend. The examples were designed to minimize costs as a customer scales.

This document is designed to assist customers in understanding the pricing associated with operating the example ASEA configuration files. For full

pricing details, please refer to each services pricing page.

1.2. Example Configuration File Pricing

The pricing found in this document is provided as an example only. Pricing represents reasonably steady state, minimal activity or traffic flows, and

only includes sample workload accounts when they exist in the example config files.

Pricing is based on the ca-central-1 region, a month with 31 days (744 hours), on-demand pricing and Bring Your Own Licensing (BYOL) for any 3rd

party firewalls. This is estimated pricing, the solution is regularly updated and pricing is dependent on the actual version and configuration used to

implement the solution.

Any changes to the example configuration file will impact the pricing. These estimates do not include any customer workloads, workloads must be

independently priced.

2.4.2 1. Accelerator Pricing

- 65/230 -

https://aws.amazon.com/pricing/

1.2.1. PRICING BY CONFIGURATION FILE

The following table provides the estimated monthly pricing based on the example configuration. Additional information on each of the example config

files can be found here.

Example

Configuration

Description Estimated

Monthly

Pricing

Ultra-Lite This configuration file was created to represent an extremely minimalistic Accelerator deployment, to

demonstrate the art of the possible for an extremely simple config. This example is NOT

recommended as it violates many AWS best practices.

$30

Test Designed to reduce solution costs, while demonstrating full solution functionality (Use for testing Full/

Lite configurations or Low Security Profiles). Based on Lite Config w/AWS Network Firewall.

$1,500

Lite Same as Full Config with the following changes: 1) Reduces the FortiGate instance sizes from c5n.2xl

to c5n.xl (VM08 to VM04); 2) Only deploys the 9 required centralized Interface Endpoints (removes

50). All services remain accessible using the AWS public endpoints, but require traversing the

perimeter firewalls; 3) Removes the perimeter VPC Interface Endpoints; 4) Removes the Unclass ou

and VPC.

Four variants of the lite configuration file are provided:

- AWS Control Tower w/AWS Network Firewall instead of IPSEC VPN Firewalls (recommended

starting point)

- AWS Network Firewall instead of IPSEC VPN Firewalls

- IPSEC VPN integrated 3rd party firewalls

- AWS Gateway Load Balancer integrated 3rd party firewalls

$2,575

$2,550

$2,450

+FW lic.

$2475

+FW lic.

Full Large IPSEC VPN Firewalls w/Endpoints - The full configuration file was based on feedback from

customers moving into AWS at scale and at a rapid pace. Customers of this nature have indicated that

they do not want to have to upsize their perimeter firewalls or add Interface endpoints as their

developers start to use new AWS services. These are the two most expensive components of the

deployed architecture solution.

$4,200

2.4.2 1. Accelerator Pricing

- 66/230 -

1.2.2. PRICING BY AWS ACCOUNT (ALL CONFIGURATIONS)

The following table provides the estimated monthly pricing per AWS account for each of the example configuration files.

2.4.2 1. Accelerator Pricing

- 67/230 -

AWS Account Description Ultra

Lite

Test Lite Full

Management This is the organization management or root account. This

account aggregates organization wide billing, and is used to

manage the Accelerator, AWS SSO and SCPs. Access to

this account must be highly restricted. This account should

not contain any customer resources or workloads.

$10 $75 $140 $140

Operations This Account is used for centralized IT operational

resources (MAD, rsyslog, ITSM, etc.) which need to made

available to all accounts in the organization and would

generally be used and managed by the Cloud Operations

team.

- $275 $680 $680

Security The security account is generally used and managed by the

customers security and compliance teams, and contains an

organizations security tooling and consoles. This account

functions as the organization administrative account for

Security Hub, GuardDuty, Macie, Firewall Manager, and

Access Analyzer. This account also has the ability to

assume a view-only role in every account in the

organization to conduct security investigations.

$5 $10 $25 $25

Log Archive The log archive account provides a central aggregation and

secure long-term storage location for all logs created within

the AWS organization. Logs created in every account in the

organization are centralized to an S3 bucket in this account.

$15 $35 $55 $55

Perimeter This account is used as the centralized internet facing

ingress/egress point and contains edge security services for

the organizations IaaS based workloads.

- $590 $410-

$700

$1,200

Shared

Network

This account is used for centralized or shared networking

resources and will typically contain a transit gateway to

enable routing between different AWS based and on-

premises networks. If a centralized or shared VPC

architecture is deployed, this account will also contain VPCs

(i.e. Dev, Test, Prod) which are shared via RAM sharing to

accounts within designated OUs in the organization. If a

spoke architecture is used, the Transit gateway is instead

shared to the accounts within the organization.

- $515 $825-

$995

$1,950

MyDev1 This is an optional sample workload account which lives in

the Dev organizational unit. Dev accounts have a full set of

security guardrails similar to a production accounts and are

designed to be used by developers. These accounts

leverage either local or centralized networking and are

connected to the organizations network via the centralized

transit gateway, which is used to access the internet via the

perimeter security account or on-premises networks.

- - $80 $80

TheFunAccount This is an optional sample workload account that is created

in Sandbox organizational unit. Sandbox accounts are

designed for experimentation only, as they have the fewest

guardrails, and provide the most cloud native experience.

These accounts leverage localized networking and are fully

isolated from all other organization networks, with no transit

gateway connectivity and direct internet access via a local

internet gateway.

- - $70 $70

2.4.2 1. Accelerator Pricing

- 68/230 -

1.2.3. DETAILED PRICING BY AWS SERVICE (LITE CONFIG – IPSEC VPN ACTIVE/ACTIVE FIREWALLS)

We picked a single example configuration file to provide detailed pricing per service.

AWS Account Description Ultra

Lite

Test Lite Full

TOTAL Estimated Monthly Pricing $30 $1500 $2,450

-

$2,575

$4,200

2.4.2 1. Accelerator Pricing

- 69/230 -

The following table provides the estimated monthly pricing per AWS services provisioned by the Accelerator, across all accounts, for the Lite – IPSec

VPN configuration.

2.4.2 1. Accelerator Pricing

- 70/230 -

AWS service Quantity Estimated

Monthly

Pricing

CloudTrail (All Regions) $28

CloudWatch (All Regions) $35

CloudWatch Events (All Regions) $0

CodeBuild $2

CodeCommit $0

CodePipeline $0

Config (All Regions) $85

Data Transfer $0

Directory Service - Managed Active Directory (2 domain controllers)

- Shared Directory (2 accounts)

- Small AD Connector (1)

$444

DynamoDB $0

EC2 Container Registry (ECR) $0.2

Elastic Compute Cloud (EC2) - NAT Gateway (1)

- Remote Desktop Gateway (1 x Windows t3.large)

- rsyslog Servers (2 x Linux t3.large)

- Fortinet Firewalls (2 x Linux c5n.xlarge)

- EBS Volumes (30 GB x 3 instances, 100 GB x 2 instances)

$669

Elastic Load Balancing - Application Load Balancing (2)

- Network Load Balancing (rsyslog) (1)

$55

GuardDuty (All Regions) $41

Key Management Service (All Regions) $44

Kinesis $12

Kinesis Firehose $2

Lambda (All Regions) $0

Macie (All Regions) $4

Route 53 - HostedZones (11)

- Resolver Network Interfaces (4)

$378

Secrets Manager $5

Security Hub (All Regions) $97

Simple Notification Service (All regions) $0

Simple Queue Service (All Regions) $0

Simple Storage Service (All regions) $6

Step Functions $1

Systems Manager $0

2.4.2 1. Accelerator Pricing

- 71/230 -

AWS service Quantity Estimated

Monthly

Pricing

Virtual Private Cloud - VPC Endpoints (18)

- VPN Connections (2)

- Transit Gateway VPC Attachments (5)

- Transit Gateway VPN Attachments (2)

$542

TOTAL Estimated Monthly Pricing $2,450

2.4.2 1. Accelerator Pricing

- 72/230 -

2.4.3 AWS Secure Environment Accelerator Deployment Capabilities

Overview

Deploys, creates, manages and updates the following objects across a multi-region, multi-account AWS environment

2.4.3 AWS Secure Environment Accelerator Deployment Capabilities

- 73/230 -

TASK Accelerator - What happens, WHERE, under what condition, on each state

machine execution

AWS Accounts

- Creates mandatory accounts (accounts which other

accounts are dependent on)

organization management (root) account, global scope

- Creates workload accounts (individually or in bulk), base

personality determined by ou placement

organization management (root) account, global scope

- Supports native AWS Organization account and OU

activities (OU and account rename, move account between

OU's, create accounts, etc.)

organization management (root) account, global scope

- Applies a Deny All SCP on any newly created account(s)

until successfully guardrailed

organization management (root) account, new account scope (failure to apply

guardrails fails the Accelerator and leaves account blocked until remediated)

- Allows bulk parallel* account creation, configuration,

updates and guardrail application

creates, guardrails and configures new accounts and regions in parallel per

defined personas, organization management (root) account. Control Tower

account ingestion is sequential at this time.

- Performs 'account warming' to establish initial limits, when

required

state Machine region only, defined accounts (per region potential)

- Checks limit increases, when required (complies with initial

limits until increased)

per account, per region (supported limits only)

- Automatically submits limit increases, when required state Machine region only, defined accounts (per region potential)

- Leverages AWS Control Tower Accelerator and Control Tower home regions must match, the Accelerator

supports all on-by-default regions and will require a standalone install in regions

not yet supported by Control Tower

Networking

- Creates Transit Gateways and TGW route tables incl. static

routes and inter-region TGW peering

in the defined region(s), defined account(s)

- Creates centralized and/or local account (bespoke) VPC's in the defined region(s), defined account(s)

...all completely and individually customizable (per account,

VPC, subnet, or OU), Static or Dynamic VPC and subnet

CIDR assignments

- Creates Subnets, Route tables, NACLs, Security groups,

NATGWs, IGWs, VGWs, CGWs (per customer specs)

part of any VPC, in the defined region(s), defined account(s) - allows detailed

CIDR allocation, and cross-account security group referencing

- Deletes default VPC's (worldwide) in all regions, in all accounts, can disable regions (all accounts or specific

account)

- Creates VPC Endpoints (Gateway and Interface) part of any VPC, in the defined region(s), defined account(s)

- Configures centralized endpoints (R53 zones populated,

shared and attached to local and cross-account VPC's)

configures regional central endpoints (only one 'central' VPC per region)

- Creates Route 53 Private and Public Zones in the defined account(s), defined region(s), defined VPC(s), global scope

- Creates Resolver Rules and Resolver (inbound/outbound)

Endpoints

part of a specific VPC(s), in the defined region(s), defined account(s) (i.e. per

region possible)

...including MAD R53 DNS resolver rule creation created in same region as MAD only, shared to same region VPC's when use-

central-endpoints set

- Automatically creates R53 VPC Endpoint Overloaded

Zones

same region(s), same account(s) as the endpoint and VPC(s)

- Deploys and configures AWS Network Firewall on any VPC, any region, any account

2.4.3 AWS Secure Environment Accelerator Deployment Capabilities

- 74/230 -

TASK Accelerator - What happens, WHERE, under what condition, on each state

machine execution

Cross-Account Object Sharing

- VPC and Subnet sharing, including account level retagging/

naming (and per account security group 'replication')

VPC's are shared to accounts within the SAME REGION as the source VPC

only

An OU could have additional VPC's defined for additional regions and would be

shared to the appropriate accounts in the same additional regions

- VPC peering and TGW attachments (local and cross-

account)

in the defined region, no cross-region attachments or peering supported

- Managed Active Directory sharing state machine region only (consider same region as the MAD only)(unshare

method not implemented)

- Automated TGW inter-region peering cross-region, cross-account or same-account

- Shares SSM remediation documents from defined account(s), to defined OU's, in defined regions

Zone sharing and VPC associations

- Public Hosted Zones no sharing, no association required (any account, any VPC, any region)

- Private Hosted Zones - i.e. Cloud DNS domains associated worldwide to all VPCs with use-central-endpoints

- Endpoint Private Hosted Zones associate within region, for all VPC use-central-endpoints (including cross-

account)

- On-premise resolver rules associate within region, for all VPC use-central-endpoints (including cross-

account)

- MAD resolver rule association same region as the MAD resolver only, assoc. w/all VPC use-central-endpoints

Identity

- Creates Directory services (Managed Active Directory and

Active Directory Connectors)

in a specific VPC, in the defined region, defined account - only 1 per account,

therefore can't have a second region in the same account (ADC creation only

supported in mandatory accounts)

- Creates Windows admin bastion host auto-scaling group once per above MAD (once per account), same region as MAD

- Set Windows domain password policies (initial installation

only)

once per above MAD (once per account), same region as MAD

- Set IAM account password policies once per account, global scope

- Creates Windows domain users and groups (initial

installation only)

once per above MAD (once per account), same region as MAD

- Creates IAM Policies, Roles, Users, and Groups once per account, global scope

Cloud Security Services

- Enables and configs the following AWS services, worldwide

w/central specified admin account:

(each service can have specified regions disabled)

- GuardDuty w/S3 protection enabled all regions, all accounts, admin account per region

- Security Hub (Enables specified security standards, and

disables specified individual controls)

enabled all regions, all accounts, admin account per region

- Firewall Manager enabled once per account (global scope), single admin account

- CloudTrail w/Insights and S3 data plane logging enabled all regions (using Organization trail, stored in Organization

Management account)

- Config Recorders/Aggregator enabled all regions, all regions include global events, aggregator set to

specified region in Organization Management account

2.4.3 AWS Secure Environment Accelerator Deployment Capabilities

- 75/230 -

TASK Accelerator - What happens, WHERE, under what condition, on each state

machine execution

- Macie enabled all regions, admin account per region

- IAM Access Analyzer enabled once per account (global scope), single admin account

- Enables CloudWatch access from central specified admin

account

enabled once per account (global scope), two admin accounts (Ops & Security)

- Deploys customer provided SSM remediation documents

(four provided out-of-box today)

customized per OU, defined regions, defined accounts

...remediates S3 buckets without KMS CMK encryption and

ALB's without centralized logging

customized per OU, all regions, integrated w/SSM remediation, when desired

- Deploys AWS Config rules (managed and custom)

including AWS Conformance packs (NIST 800-53 deployed

by default + 2 custom)

customized per OU, all regions, all accounts integrated w/SSM remediation,

when desired

Other Security Capabilities

- Creates, deploys and applies Service Control Policies at the top OU level only, sub-ou's managed directly through AWS Organizations

- Creates Customer Managed KMS Keys w/automatic key

rotation (SSM, EBS, S3)

SSM and EBS keys are created if a VPC exists in the region, S3 if we need an

Accelerator bucket in the region, per account

- Enables account level default EBS KMS CMK encryption set if a VPC exists in the region, per account

- Enables S3 Block Public Access once per account, global scope

- Configures Systems Manager Session Manager w/KMS

CMK encryption and centralized logging

set if a VPC exists in the region, per account

- Imports or requests certificates into AWS Certificate

Manager

State Machine region only (per region potential, required for ALB deployments)

- Deploys both perimeter and account level ALB's w/Lambda

health checks, certs & TLS policies

State Machine region only (per region potential)

- Deploys & configures 3rd party firewall clusters and

management instances

in the defined region(s), defined account(s)

...Gateway Load Balancer w/auto-scaling (NEW) and VPN

IPSec BGP ECMP deployment options

- Configuration is fully managed and maintained in AWS

CodeCommit - full multi-account configuration history

organization management (root) account

...breaking configuration changes block Accelerator

execution

Idempotent - extensive error handling and failure cleanup - Accelerator can be

stopped, started, and rerun without implication

Centralized Logging

- Deploys an rsyslog auto-scaling cluster behind an NLB, all

syslogs forwarded to CWL

State Machine region only (per region potential)

- Centralizes logging to a single centralized S3 KMS CMK

encrypted bucket (enables, configures and centralizes) incl:

Sets S3 ownership flag, sets bucket retentions

- VPC Flow logs (w/Enhanced metadata fields and optional

CWL destination)

part of a specific VPC, in the defined region, defined account (to local account

bucket in state machine region, replicated to log-archive primary region)

- Organizational Cost and Usage Reports once per organization, global scope (to local account bucket in state machine

region, replicated to log-archive primary region)

- CloudTrail Logs including S3 Data Plane Logs (also sent to

CWL)

directly back to log-archive, specified primary region

2.4.3 AWS Secure Environment Accelerator Deployment Capabilities

- 76/230 -

General

"defined" region, "defined" account, means "customer defined", either at installation, upgrade, or any time they decide to reconfigure

all items are created per customer defined parameters and configurations and are fully customizable without changing a single line of code

security services are enabled and deployed globally, but, each service can be disabled per region. A single region deployment is possible.

customer can enable/disable features, or change the configuration of each feature in the Accelerator config file

customers can evolve their configurations over time, as they evolve and as their requirements change, without the requirement for code changes

or professional services

TASK Accelerator - What happens, WHERE, under what condition, on each state

machine execution

- All CloudWatch Logs (includes rsyslog logs) (and setting

Log group retentions)

State machine region, plus configured regions

- Config History and Snapshots directly back to log-archive account specified primary region

- Route 53 Public Zone Logs, DNS Resolver Query Logs to CloudWatch Logs in us-east-1 (which are sent to S3)

- GuardDuty Findings directly back to log-archive, specified primary region

- Macie Discovery results directly back to security, specified primary region, replicated to log-archive

- ALB Logs State Machine region only (same as ALB deployment)

- SSM Session Logs (also sent to CWL) All regions currently send back to central region, log-archive account

Extensibility

- Populates each accounts Parameter Store with the

Accelerator deployed objects (allows customer IaC to

extend/leverage)

each account, defined regions (all ELB's across the environment are populated

in specified accounts, i.e. perimeter, to enable automated end-to-end plumbing)

- Every execution outputs the execution status and a list of

successfully guardrailed accounts to a SNS topic

allows 3rd party framework to execute after every Accelerator execution by

hooking to SNS topic

...which emails a customer defined email address ...or hooking to the email alert

- Deploys roles with customized access (read-only,write) to

the log-archive buckets (enabling customer SIEM

deployments, SSM, EC2 CWL)

defined account, global scope

- Designed for Day 1, 2 and day 10. Customers get new

features without any customization effort no matter the

deployed architecture

Upgradable from any version to any version, no customization or professional

services required (Customer production proven across multiple releases)

Alerting

- Deploys global High, Medium, Low, Ignore priority SNS

topics and email subscriptions

in the defined account, org accessible regional topics, each region subscribed

to a single defined central region which has the email subscriptions

- Deploys customer defined CloudWatch Log Metrics and

Alarms w/prioritized alarms (19 out-of-box)

all accounts, home region only, as this is where the Org/account CloudTrail

exists

- Creates and configures AWS budgets w/alerting

(customizable per OU and per account)

once per account, global scope

- Configures email alerting for CloudTrail Metric Alarms,

Firewall Manager Events, Security Hub Findings incl.

GuardDuty Findings

•

•

•

•

•

2.4.3 AWS Secure Environment Accelerator Deployment Capabilities

- 77/230 -

Region support

All AWS commercial regions are supported. Lack of availability of CodeBuild, CodeCommit, or AWS Organizations in the Accelerator primary or

installation region will prevent installation directly in that region. In these cases, customers can select a different installation region and the

Accelerator can remotely deploy configurations and guardrails to that unsupported installation region.

Prior to v1.2.5, we utilized a single StackSet, which blocked several additional installation regions. The Accelerator no longer leverages any

StackSets, unblocking installing directly in several additional regions.

As most features can be toggled on/off (per region), we expect most regions should be supportable both as a primary (or installation) region with

the three above noted exceptions, and in these cases should still be fully supported as a managed (or secondary) region.

Opt-in regions are not yet supported, but given enough demand, could easily be added.

...Return to Accelerator Table of Contents

•

•

•

•

2.4.3 AWS Secure Environment Accelerator Deployment Capabilities

- 78/230 -

2.4.4 1. Accelerator Central Logging Implementation and File Structures

The following diagram details the ASEA central logging implementation:

1.1. Accelerator Central Logging Buckets

1.1.1. NOTES

Every customer has two Accelerator logging buckets

Control Tower installations have an additional two Control Tower logging buckets

Customers could use any account name for their central logging account

Bucket Type Bucket Name Purpose

AES Encrypted

Bucket

pbmmaccel-logarchive-phase0-

aescacentral1-1py9vr4cdwuxu

ALB Logs - ALB's do not support logging to a KMS

bucket

KMS Encrypted

Bucket

pbmmaccel-logarchive-phase0-

cacentral1-1tr23emhncdzo

All other AWS Accelerator initiated logs

AES or KMS

Encrypted

aws-controltower-logs-123456789012-ca-central-1 All Control Tower initiated logs

AES or KMS

Encrypted

aws-controltower-s3-access-logs-123456789012-ca-

central-1

S3 Access logs for the Control Tower logs bucket

•

•

•

2.4.4 1. Accelerator Central Logging Implementation and File Structures

- 79/230 -

Bucket name format is: {Accel-Prefix}-{Account-Name}-{Accel-Phase}-xxx{Region}-{Random}

{Accel-Prefix} defaults to 'asea' (previously 'pbmmaccel' for Canada)

{Accel-Phase} should always be 'phase0'

{region} should always be 'cacentral1' for Canada

{account} is likely to be 'log-archive'

xxx is either "aes" or "" (nothing)

•

•

•

•

•

•

2.4.4 1. Accelerator Central Logging Implementation and File Structures

- 80/230 -

1.2. Accelerator Bucket Folders

2.4.4 1. Accelerator Central Logging Implementation and File Structures

- 81/230 -

Log Type Folder Path Example

ELB (in AES

bucket)

{account#}/elb-

{elbname}/AWSLogs/

{account#}/*

s3://pbmmaccel-logarchive-phase0-aescacentral1-1py9vr4ucwuxu/123456789012/elb-Core-mydevacct1-

alb/AWSLogs/123456789012/ELBAccessLogTestFile

s3://pbmmaccel-logarchive-phase0-aescacentral1-1py9vr4ucwuxu/123456789013/elb-Public-Prod-

perimeter-alb/AWSLogs/123456789013/ELBAccessLogTestFile

VPC Flow

Logs

{account#}/{vpc-

name}/AWSLogs/

{account#}/

vpcflowlogs/{region}/

{year}/{month}/{day}/*

s3://pbmmaccel-logarchive-phase0-cacentral1-1tr23emhncdzo/123456789012/Test-East-lcl/AWSLogs/

123456789012/vpcflowlogs/us-east-1/2020/08/31/123456789012_vpcflowlogs_us-

east-1_fl-04af3543c74402594_20200831T1720Z_73d3922a.log.gz

Macie

Reports

{account#}/

macietestobject

s3://pbmmaccel-logarchive-phase0-cacentral1-1tr23emhncdzo/123456789014/macie-test-object

Cost and

Usage

Reports

{account#}/cur/Cost-

and-Usage-Report/*

s3://pbmmaccel-logarchive-phase0-cacentral1-1tr23emhncdzo/123456789015/cur/Cost-and-Usage-Report/

*

Config

History*

AWSLogs/{account#}/

Config/{region}/{year}/

{month}/{day}/

ConfigHistory/*

s3://pbmmaccel-logarchive-phase0-cacentral1-1tr23emhncdzo/AWSLogs/123456789016/Config/ca-

central-1/2020/8/31/ConfigHistory/123456789016_Config_ca-

central-1_ConfigHistory_AWS::CloudFormation::Stack_20200831T011226Z_20200831T025845Z_1.json.gz

Config

Snapshot*

AWSLogs/{account#}/

Config/{region}/{year}/

{month}/{day}/

ConfigSnapshot/*

s3://pbmmaccel-logarchive-phase0-cacentral1-1tr23emhncdzo/AWSLogs/123456789016/Config/ca-

central-1/2020/8/30/ConfigSnapshot/123456789016_Config_ca-

central-1_ConfigSnapshot_20200830T193058Z_5d173149-e6d0-41e4-af7f-031ff736f8c8.json.gz

GuardDuty AWSLogs/{account#}/

GuardDuty/{region}/

{year}/{month}/{day}/*

s3://pbmmaccel-logarchive-phase0-cacentral1-1tr23emhncdzo/AWSLogs/123456789014/GuardDuty/ca-

central-1/2020/09/02/294c9171-4867-3774-9756-f6f6c209616f.jsonl.gz

CloudWatch

Logs****

CloudWatchLogs/

{year}/{month}/{day}/

{hour}/*

s3://pbmmaccel-logarchive-phase0-cacentral1-1tr23emhncdzo/CloudWatchLogs/2020/08/30/00/

PBMMAccel-Kinesis-Delivery-Stream-1-2020-08-30-00-53-33-35aeea4c-582a-444b-8afa-848567924094

CloudTrail

Digest***

{org-id}/AWSLogs/

{org-id}/{account#}/

CloudTrail-Digest/

{region}/{year}/

{month}/{day}/*

s3://pbmmaccel-logarchive-phase0-cacentral1-1tr23emhncdzo/o-fxozgwu6rc/AWSLogs/o-fxozgwu6rc/

123456789016/CloudTrail-Digest/ca-central-1/2020/08/30/123456789016_CloudTrail-Digest_ca-

central-1_PBMMAccel-Org-Trail_ca-central-1_20200830T190938Z.json.gz

CloudTrail

Insights**

{org-id}/AWSLogs/

{org-id}/{account#}/

CloudTrail-Insights/

{region}/{year}/

{month}/{day}/*

s3://pbmmaccel-logarchive-phase0-cacentral1-1tr23emhncdzo/o-fxozgwu6rc/AWSLogs/o-fxozgwu6rc/

123456789015/CloudTrail-Insight/ca-central-1/2020/09/23/123456789015_CloudTrail-Insight_ca-

central-1_20200923T0516Z_KL5e9VCV2SS7IqzB.json.gz

CloudTrail*** {org-id}/AWSLogs/

{org-id}/{account#}/

CloudTrail/{region}/

{year}/{month}/{day}/*

s3://pbmmaccel-logarchive-phase0-cacentral1-1tr23emhncdzo/o-fxozgwu6rc/AWSLogs/o-fxozgwu6rc/

123456789016/CloudTrail/ca-central-1/2020/08/30/123456789016_CloudTrail_ca-

central-1_20200830T0115Z_3YQJxwt5qUaOzMtL.json.gz

CT S3

Access Logs

{no folders} s3://aws-controltower-s3-access-logs-123456789012-ca-

central-1/2021-04-26-18-11-21-8647E1080048E5CB

SSM

Inventory

ssm-inventory/{ssm-

inventory-type}/

accountid={account#}/

region={region}/

resourcetype={rt}/*

s3://asea-logarchive-phase0-cacentral1-1tr23emhncdzo/ssm-inventory/AWS:Application/

accountid=123456789012/region=ca-central-1/resourcetype=ManagedInstanceInventory/

i-001188b4e152aecaf.json

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.4.4 1. Accelerator Central Logging Implementation and File Structures

- 82/230 -

1.2.1. NOTES

* Located in Control Tower bucket when installed, Control Tower adds the {org-id} (i.e. o-h9ho05hcxl/) as the top level folder

** Only available in Accelerator Standalone deployments

*** CloudTrail control plane logs located in Control Tower bucket when installed, Control Tower drops the {org-id} (i.e. o-h9ho05hcxl/) from the middle

of the folder path. This may change when Control Tower migrates to Organization Trails. CloudTrail data plane logs remain in the Accelerator bucket.

**** v1.5.1 introduces the capability to split CloudWatch log groups starting with specific prefixes out into customer named subfolders. The folder/file

structure is otherwise identical. The v1.5.1 example config files separate out MAD, RQL, Security Hub, NFW, rsyslog, and SSM logs by default.

Example: Security Hub logs will be in the following structure: CloudWatchLogs/security-hub/{year}/{month}/{day}/{hour}/

Account number is sometimes duplicated in path because logs replicated from another account always need to start with the source account

number

Macie reports will only appear in the {account#} for the central security account, and only if a customer schedules PII discovery reports

All CloudWatch Logs from all accounts are mixed in the same folder, the embedded log format contains the source account information as

documented here: https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/ValidateLogEventFlow.html

With the exception of CloudWatch Logs, all logs are in the original format provided by the log source/service.

•

•

•

•

2.4.4 1. Accelerator Central Logging Implementation and File Structures

- 83/230 -

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/ValidateLogEventFlow.html

2.4.5 Object Naming

ACCELERATOR OBJECT NAMING

Resources will have the 'Name' tag assigned, where Name={name}{suffix}

No prefix or suffix will be applied to DNS records/zones (as that breaks them)

When _ is not supported, a - will be used

Stacks/stacksets/functions and non-end user accessed objects deployed in all accounts will also start with the {AcceleratorPrefix} prefix (i.e.

"PBMMAccel-" or "ASEA-")

The prefix does not apply to objects like VPC's, subnets, or TGW's which customers need to directly access. This is for objects deployed to build

the customer accessible objects

This prefix will be protected by SCP's so customers don't break 'managed' features

Resources will have the tag 'Accelerator={AcceleratorName}' assigned when tags are supported

Stacks will have the tag 'AcceleratorName={AcceleratorName}' assigned, which will often (but not always) be inherited by objects created by the

stack (due to TGW duplicate tag issue)

DEFAULTS

•

•

•

•

•

•

•

•

- the default {AcceleratorName} is 'PBMM' before v1.5.0 and 'ASEA' after v1.5.0
- the default {AcceleratorPrefix} is 'PBMMAccel-' before v1.5.0 and 'ASEA-' after v1.5.0

2.4.5 Object Naming

- 84/230 -

SUFFIX'S

suffix object type

_vpc VPC

_azN_net Subnet

_azN_rt RouteTable

_tgw Transit Gateway

-key KMS key

_pcx Peering Connection

_sg Security Group

_nacl NACL

_alb Application Load Balancer

_nlb Network Load Balancer

_agw Appliance Gateway

_vpce VPC Endpoint

_AMI AMI

_dhcp DHCP option set

_snap snapshot

_ebs Block storage

_igw internet gateway

_lgw Local gateway

_nat NAT gateway

_vpg Virtual private gateway

_cgw Customer gateway

_vpn VPN Connection

_sm Step Functions

_rule CW Event Rule

_pl CodeBuild

2.4.5 Object Naming

- 85/230 -

NO SUFFIX

suffix object type

None Stacks

None CFN_Stack_Sets

None Lambda

None Cloud Trails

None CWL Groups

None Config Rules

None OU

None Service Control Policy

2.4.5 Object Naming

- 86/230 -

2.4.5 Object Naming

- 87/230 -

3. 1. Accelerator Basic Operation and Frequently asked Questions

3.1 1.1. Operational Activities

3. 1. Accelerator Basic Operation and Frequently asked Questions

- 88/230 -

How do I add new AWS accounts to my AWS Organization?

We offer three options and all can be used in the same Accelerator deployment. All options work with AWS Control Tower,

ensuring the account is both ingested into Control Tower and all Accelerator guardrails are automatically applied.

No matter the mechanism you choose, new accounts will automatically be blocked from use until fully guardrailed, the

Accelerator will automatically execute, and accounts will automatically be ingested into AWS Control Tower (if deployed).

Option 1

Users can simply add the following five lines to the configuration file workload-account-configs section and rerun the

state machine. The majority of the account configuration will be picked up from the OU the AWS account has been

assigned. You can also add additional account specific configuration, or override items like the default OU budget with an

account specific budget. This mechanism is often used by customers that wish to programmatically create AWS accounts

using the Accelerator and allows for adding many new accounts at one time.

Option 2

We've heard consistent feedback that our customers wish to use native AWS services and do not want to do things

differently once security controls, guardrails, or accelerators are applied to their environment. In this regard, simply create

your new AWS account in AWS Organizations as you did before**, either by a) using the AWS Console or b) by using

standard AWS account creation API's, CLI or 3rd party tools like Terraform.

** IMPORTANT: When creating the new AWS account using AWS Organizations, you need to specify the role name

provided in the Accelerator configuration file global-options\organization-admin-role , otherwise we cannot bootstrap

the account. In Control Tower installations, this MUST be set to AWSControlTowerExecution , for customers who installed

prior to v1.2.5 this value is AWSCloudFormationStackSetExecutionRole and after v1.2.5 we were recommending using the

role OrganizationAccountAccessRole as this role is used by default by AWS Organizations if no role name is specified

when creating AWS accounts through the AWS console or cli.

On account creation we will apply a quarantine SCP which prevents the account from being used by anyone until the

Accelerator has applied the appropriate guardrails

Moving the account into the appropriate OU triggers the state machine and the application of the guardrails to the account,

once complete, we will remove the quarantine SCP.

NOTE: Accounts CANNOT be moved between OU's to maintain compliance, so select the proper top-level OU with care

In AWS Organizations, select ALL the newly created AWS accounts and move them all (preferably at once) to the correct

destination OU (assuming the same OU for all accounts)

In case you need to move accounts to multiple OU's we have added a 2 minute delay before triggering the State Machine

Any accounts moved after the 2 minute window will NOT be properly ingested, and will need to be ingested on a

subsequent State Machine Execution.

1.1.1. How do I add new AWS accounts to my AWS Organization?

"fun-acct": {

 "account-name": "TheFunAccount",

 "email": "myemail+aseaT-funacct@example.com",

 "src-filename": "config.json",

 "ou": "Sandbox"

}

•

•

•

•

•

•

•

3.1 1.1. Operational Activities

- 89/230 -

Option 3

Create your account using Account Factory in the AWS Control Tower console.

I tried to enroll a new account via Control Tower but it failed?

or "The state machine failed during the 'Load Organization Configuration' step with the error 'The Control Tower account:

ACCOUNT_NAME is in a failed state ERROR'"

If account enrollment fails within Control Tower, you will need to follow the troubleshooting steps here. A common reason

for this is not having the ControlTowerExectution role created in the account you are trying to enroll. Even after you

successfully enroll the account, it is possible the state machine will fail at Load Organization Configuration . If you look

at the CloudWatch logs you will see the error message:

This is because the Accelerator checks that there are no errors with Control Tower before continuing. In some cases

Control Tower can leave an orphaned Service Catalog product in an Error state. You need to cleanup Control Towers

Service Catalogs Provisioned Products so there are no products remaining in an error or tainted state before you can

successfully re-run the state machine.

1.1.2. I tried to enroll a new account via Control Tower but it failed?

There were errors while loading the configuration: The Control Tower account: ACCOUNT_NAME is in a failed state ERROR.

3.1 1.1. Operational Activities

- 90/230 -

https://docs.aws.amazon.com/controltower/latest/userguide/troubleshooting.html

Can I use AWS Organizations for all tasks I currently use AWS Organizations for?

In AWS Organizations you can continue to:

create and rename AWS accounts

move AWS accounts between OU's

create, delete and rename OU's, including support for nested OU's

create, rename, modify, apply and remove SCP's

What can't I do:

modify Accelerator or Control Tower controlled SCP's

add/remove SCP's on top-level OU's (these are Accelerator and/or Control Tower controlled)

users can change SCP's on non-top-level OU's and non-Accelerator controlled accounts as they please

add/remove SCP's on specific accounts that have Accelerator controlled SCPs

move an AWS account between top-level OU's (i.e. Sandbox to Prod is a security violation)

moving between Prod/sub-ou-1 to Prod/sub-ou2 or Prod/sub-ou2/sub-ou2a/sub-ou2ab is fully supported

create a top-level OU (need to validate, as they require config file entries)

remove quarantine SCP from newly created accounts

we do not support forward slashes (/) in OU names, even though the AWS platform does

More details:

If an AWS account is renamed, an account email is changed, or an OU is renamed, on the next state machine execution,

the config file will automatically be updated.

If you edit an Accelerator controlled SCP through Organizations, we will reset it per what is defined in the Accelerator

configuration files.

If you add/remove an SCP from a top-level OU or Accelerator controlled account, we will put them back as defined in the

Accelerator configuration file.

If you move an account between top-level OU's, we will put it back to its original designated top-level OU.

The Accelerator fully supports nested OU's, customers can create any depth OU structure in AWS Organizations and add/

remove/change SCP's below the top-level as they desire or move accounts between these OU's without restriction. Users

can create OU's to the full AWS OU structure/depth

Except for the Quarantine SCP applied to specific accounts, we do not 'control' SCP's below the top level, customers can

add/create/customize SCP's

as of v1.3.3 customers can optionally control account level SCP's through the configuration file

1.1.3. Can I use AWS Organizations for all tasks I currently use AWS Organizations for?

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.1 1.1. Operational Activities

- 91/230 -

How do I make changes to items I defined in the Accelerator configuration file during installation?

Simply update your configuration file in CodeCommit and rerun the state machine! In most cases, it is that simple.

If you ask the Accelerator to do something that is not supported by the AWS platform, the state machine will fail, so it needs

to be a supported capability. For example, the platform does not allow you to change the CIDR block on a VPC, but you

can accomplish this as you would today by using the Accelerator to deploy a new second VPC, manually migrating

workloads, and then removing the deprecated VPC from the Accelerator configuration.

Below we have also documented additional considerations when creating or updating the configuration file.

It should be noted that we have added code to the Accelerator to block customers from making many 'breaking' or impactful

changes to their configuration files. If someone is positive they want to make these changes, we also provide override

switches to allow these changes to be attempted forcefully.

Can I update the config file while the State Machine is running? When will those changes be applied?

Yes. The state machine captures a consistent input state of the requested configuration when it starts. The running

Accelerator instance does not see or consider any configuration changes that occur after it has started. All configuration

changes occurring after the state machine is running will only be leveraged on the next state machine execution.

What if I really mess up the configuration file?

The Accelerator is designed with checks to compare your current configuration file with the version of the config file from

the previous successful execution of the state machine. If we believe you are making major or breaking changes to the

config file, we will purposefully fail the state machine. See Config file and Deployment Protections for more details.

With the release of v1.3.0 we introduced state machine scoping capabilities to further protect customers, detailed here.

1.1.4. How do I make changes to items I defined in the Accelerator configuration file during installation?

1.1.5. Can I update the config file while the State Machine is running? When will those changes be applied?

1.1.6. What if I really mess up the configuration file?

3.1 1.1. Operational Activities

- 92/230 -

What if my State Machine fails? Why? Previous solutions had complex recovery processes, what's involved?

If your main state machine fails, review the error(s), resolve the problem and simply re-run the state machine. We've put a

huge focus on ensuring the solution is idempotent and to ensure recovery is a smooth and easy process.

Ensuring the integrity of deployed guardrails is critical in operating and maintaining an environment hosting protected data.

Based on customer feedback and security best practices, we purposely fail the state machine if we cannot successfully

deploy guardrails.

Additionally, with millions of active customers each supporting different and diverse use cases and with the rapid rate of

evolution of the AWS platform, sometimes we will encounter unexpected circumstances and the state machine might fail.

We've spent a lot of time over the course of the Accelerator development process ensuring the solution can roll forward, roll

backward, be stopped, restarted, and rerun without issues. A huge focus was placed on dealing with and writing custom

code to manage and deal with non-idempotent resources (like S3 buckets, log groups, KMS keys, etc.). We've spent a lot

of time ensuring that any failed artifacts are automatically cleaned up and don't cause subsequent executions to fail. We've

put a strong focus on ensuring you do not need to go into your various AWS sub-accounts and manually remove or cleanup

resources or deployment failures. We've also tried to provide usable error messages that are easy to understand and

troubleshoot. As new scenarios are brought to our attention, we continue to adjust the codebase to better handle these

situations.

Will your state machine fail at some point in time, likely. Will you be able to easily recover and move forward without

extensive time and effort, YES!

1.1.7. What if my State Machine fails? Why? Previous solutions had complex recovery processes, what's

involved?

3.1 1.1. Operational Activities

- 93/230 -

How do I update some of the supplied sample configuration items found in reference-artifact, like SCPs and IAM

policies?

To override items like SCP's or IAM policies, customers simply need to provide the identically named file in their input

bucket. As long as the file exists in the correct folder in the customers input bucket, the Accelerator will use the customers

supplied version of the configuration item, rather than the Accelerator version. Customer SCP's need to be placed into a

folder named scp and IAM policies in a folder named iam-policy (case sensitive).

The Accelerator was designed to allow customers complete customization capabilities without any requirement to update

code or fork the GitHub repo. Additionally, rather than forcing customers to provide a multitude of config files for a standard

or prescriptive installation, we provide and auto-deploy with Accelerator versions of most required configuration items from

the reference-artifacts folder of the repo. If a customer provides the required configuration file in their Accelerator S3 input

bucket, we will use the customer supplied version of the configuration file rather than the Accelerator version. At any time,

either before initial installation, or in future, a customer can place new or updated SCPs, policies, or other supported file

types into their input bucket and we will use those instead of or in addition to Accelerator supplied versions. Customer only

need to provide the specific files they wish to override, not all files.

Customers can also define additional SCPs (or modify existing SCPs) using the name, description and filename of their

choosing, and deploy them by referencing them on the appropriate organizational unit in the config file.

Prior to v1.2.5, if we updated the default files, we overwrote customers customizations during upgrade. Simply updating the

timestamp after upgrade on the customized versions and then rerunning the state machine re-instates customer

customizations. In v1.2.5 we always use the customer customized version from the S3 bucket. Its important customers

assess newly provided defaults during an upgrade process to ensure they are incorporating all the latest fixes and

improvements. If a customer wants to revert to Accelerator provided default files, they will need to manually copy it from the

repo into their input bucket.

NOTE: Most of the provided SCPs are designed to protect the Accelerator deployed resources from modification and

ensure the integrity of the Accelerator. Extreme caution must be exercised if the provided SCPs are modified. In v1.5.0 we

restructured the SCPs based on a) customer requests, and b) the addition of Control Tower support for new installs.

we reorganized and optimized our SCP's from 4 SCP files down to 3 SCP files, without removing any protections or

guardrails;

these optimizations have resulted in minor enhancements to the SCP protections and in some cases better scoping;

the first two SCP files (Part-0 and Part-1) contain the controls which protect the integrity of the Accelerator itself;

the third file (Sensitive, Unclass, Sandbox) contains customer data protection specific guardrails, which may change based

on workload data classification or customer profiles and requirements;

this freed the fourth SCP for use by Control Tower. As Control Tower leverages 2 SCP files on the Security OU, we have

moved some of our SCP's to the account level.

1.1.8. How do I update some of the supplied sample configuration items found in reference-artifact, like SCPs

and IAM policies?

•

•

•

•

•

3.1 1.1. Operational Activities

- 94/230 -

I deployed AWS Managed Active Directory (MAD) as part of my deployment, how do I manage Active Directory

domain users, groups, and domain policies after deployment?

Customers have clearly indicated they do NOT want to use the Accelerator to manage their Active Directory domain or

change the way they manage Active Directory on an ongoing basis. Customer have also indicated, they need help getting

up and running quickly. For these reasons, the Accelerator only sets the domain password policy, and creates AD users

and groups on the initial installation of MAD. After the initial installation, customers must manage Windows users and

groups using their traditional tools. A bastion Windows host is deployed as a mechanism to support these capabilities.

Passwords for all newly created MAD users have been stored, encrypted, in AWS Secrets Manager in the Management

(root) Organization AWS account.

To create new users and groups:

RDP into the ASEA-RDGW bastion host in the Ops account

Run ADUC and create users and groups as you please under the NETBIOSDOMAIN (example) tree

Or run the appropriate PowerShell command

Go to AWS SSO and map the Active Directory group to the appropriate AWS account and permission set

The Accelerator will not create/update/delete new AD users or groups, nor will it update the domain password policy after

the initial installation of Managed Active Directory. It is your responsibility to rotate these passwords on a regular basis per

your organizations password policy. (NOTE: After updating the admin password it needs to be stored back in secrets

manager).

1.1.9. I deployed AWS Managed Active Directory (MAD) as part of my deployment, how do I manage Active

Directory domain users, groups, and domain policies after deployment?

•

•

•

•

3.1 1.1. Operational Activities

- 95/230 -

How do I suspend an AWS account?

Suspending accounts is blocked via SCP and purposely difficult, two options exist:

Modify SCP method (not desired)

Leverage the UnManaged OU

validate your config file contains the value: "ignored-ous": ["UnManaged"]

the state machine must be executed at least once after this value is added to the config file

In AWS Organizations create an OU named UnManaged in the root of the OU tree, if it does not exist

Change to the us-east-1 region and open CloudWatch and navigate to Rules

Select the PBMMAccel-MoveAccount_rule , select actions, select Disable

In Organizations move the account to be suspended to the UnManaged OU

Change to the us-east-1 region and open CloudWatch and navigate to Rules

Select the PBMMAccel-MoveAccount_rule , select actions, select Enable

login to the account to be suspended as the account root user

suspend the account through My Account

Run the state machine (from the Organization management account), the account will:

have a deleted=true value added to the config file

be moved to the suspended OU (OU value and path stays the same in the config file)

deleted=true causes OU validation to be skipped on this account on subsequent SM executions

If the AWS account was listed in the mandatory-accounts section of the config file the SM will fail (expected)

after the above tasks have been completed, remove all references to the suspended mandatory account from the config file

rerun the state machine, specifying: { "overrideComparison": true }

Deleted accounts will continue to appear under the Suspended OU for 90-days

1.1.10. How do I suspend an AWS account?

1.

2.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.1 1.1. Operational Activities

- 96/230 -

I need a new VPC, where shall I define it?

You can define a VPC in one of four major sections of the Accelerator configuration file:

within an organization unit (this is the recommended and preferred method);

within an account in mandatory-account-configs;

within an account in workload-account-configs;

defined within an organization unit, but opted-in within the account config.

We generally recommend most items be defined within organizational units, such that all workload accounts pickup their

persona from the OU they are associated and minimize per account configuration. Both a local account based VPC (as

deployed in the Sandbox OU accounts), or a central shared VPC (as deployed in the Dev/Test/Prod OU accounts in many

of the example configs) can be defined at the OU level.

As mandatory accounts often have unique configuration requirements, for example the centralized Endpoint VPC, they

must be configured within the account's configuration. Customers can define VPC's or other account specific settings within

any account's configuration, but this requires editing the configuration file for each account configuration.

Prior to v1.5.0, local VPC's defined at the OU level were each deployed with the same CIDR ranges and therefor could not

be connected to a TGW. Local VPC's requiring centralized networking (i.e. TGW connectivity) were required to be defined

in each account config, adding manual effort and bloating the configuration file.

The addition of dynamic and lookup CIDR sources in v1.5.0 resolves this problem. Local VPCs can be defined in an OU,

and each VPC will be dynamically assigned a unique CIDR range from the assigned CIDR pool, or looked up from the

DynamoDB database. Customers can now ensure connected, templated VPCs are consistently deployed to every account

in an OU, each with unique IP addresses.

v1.5.0 also added a new opt-in VPC capability. A VPC is defined in an OU and a new config file variable is added to this

VPC opt-in: true . When opt-in is set to true, the state machine does NOT create the VPC for the accounts in the OU,

essentially ignoring the VPC definition. Select accounts in the OU can then be opted-in to the VPC(s) definition, by adding

the value accountname\opt-in-vpcs: [“opt-in-vpc-name1”, “opt-in-vpc-name2”, “opt-in-vpc-nameN”] to the

specific accounts which need the VPC(s). A VPC definition with the specified name (i.e. opt-in-vpc-name1) and the value

opt-in: true , must exist in the OU config for the specified account. When these conditions apply, the VPC will be created

in the account per the OU definition. Additional opt-in VPCs can be added to an account, but VPC's cannot be removed

from the opt-in-vpcs array. VPC's can be TGW attached, assuming dynamic cidr-src is utilized, or DynamoDB is

prepopulated with the required CIDR ranges using lookup mode. cidr-src provided is suitable for disconnected

Sandbox type accounts.

The Future: While Opt-In VPCs are powerful, we want to take this further. Why not deploy an AWS Service Catalog

template which contains the names of all the available opt-in VPCs for the accounts OU, inside each account. An account

end user could then request a new VPC for their account from the list of available opt-in patterns. A user's selection would

be sent to a centralized queue for approval (w/auto-approval options), which would result in the opt-in-vpc entry in that

account being updated with the end users requested VPC pattern and the personalized VPC being created in the account

and attached to the centralized TGW (if part of the pattern). This would ensure all VPC's conformed to a set of desirable

design patterns, but also allow the end-user community choices based on their desired development and app patterns. If

you like this idea, please +1 this feature request.

1.1.11. I need a new VPC, where shall I define it?

•

•

•

•

3.1 1.1. Operational Activities

- 97/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/issues/738

How do I modify and extend the Accelerator or execute my own code after the Accelerator provisions a new AWS

account or the state machine executes?

Flexibility:

The AWS Secure Environment Accelerator was developed to enable extreme flexibility without requiring a single line of

code to be changed. One of our primary goals throughout the development process was to avoid making any decisions that

would result in users needing to fork or branch the Accelerator codebase. This would help ensure we had a sustainable and

upgradable solution for a broad customer base over time.

Functionality provided by the Accelerator can generally be controlled by modifying the main Accelerator configuration file.

Items like SCP's, rsyslog config, PowerShell scripts, and iam-policies have config files provided and auto-deployed as part

of the Accelerator to deliver on the prescriptive architecture (these are located in the \reference-artifacts folder of the

GitHub repo for reference). If you want to alter the functionality delivered by any of these additional config files, you can

simply provide your own by placing it in your specified Accelerator bucket in the appropriate sub-folder. The Accelerator will

use your provided version instead of the supplied repo reference version.

As SCP's and IAM policies are defined in the main config file, you can simply define new policies, pointing to new policy

files, and provide these new files in your bucket, and they will be used.

While a sample firewall config file is provided in the \reference-artifacts folder, it must be manually placed in your S3

bucket/folder on new Accelerator deployments

Any/all of these files can be updated at any time and will be used on the next execution of the state machine

Over time, we predict we will provide several sample or reference architectures and not just the current single PBMM

architecture (all located in the \reference-artifacts\SAMPLE_CONFIGS folder).

Extensibility:

Every execution of the state machine sends a state machine status event to a state machine SNS topic

These status events include the Success/Failure status of the state machine, and on success, a list of all successfully

processed AWS accounts

While this SNS topic is automatically subscribed to a user provided email address for user notification, users can also

create additional SNS subscriptions to enable triggering their own subsequent workflows, state machines, or custom code

using any supported SNS subscription type (Lambda, SQS, Email, HTTPS, HTTPS)

Additionally, objects deployed within an account have been populated in Parameter Store, see answer 1.3.2 for details

Example:

One of our early adopter customers has developed a custom user interface which allows their clients to request new AWS

environments. Clients provide items like cost center, budget, and select their environment requirements (i.e. Sandbox,

Unclass or full sensitive SDLC account set). On appropriate approval, this pushes the changes to the Accelerator

configuration file and triggers the state machine.

Once the state machine completes, the SNS topic triggers their follow-up workflow, validates the requested accounts were

provisioned, updates the customer's account database, and then executes a collection of customer specific follow-up

workflow actions on any newly provisioned accounts.

1.1.12. How do I modify and extend the Accelerator or execute my own code after the Accelerator provisions a

new AWS account or the state machine executes?

•

•

•

•

•

•

•

•

•

•

•

•

•

3.1 1.1. Operational Activities

- 98/230 -

How can I easily access my virtual machines or EC2 instances?

The preferred and recommended method to connect to instances within the Accelerator is by using AWS Systems Manager

Session Manager. Session Manager allows access to instances without the need to have any open firewall ports. Session

Manager allows for Command line access to instances (both Windows and Linux) directly through the AWS console, with

all activity logged to CloudWatch Logs. Session Manager enables customers to connect to Windows instances with a native

RDP client and Linux instances with a native SSH client, if desired. Customers can gain quick access to instances through

the AWS console, or using their preferred clients.

General

Both the RDGW and rsyslog instances deployed in the Ops account are properly configured for Systems Manager Session

Manager

We have implemented automation such that all instances are also automatically configured for Session Manager (i.e.

configured with the appropriate launch role, has a recent session manager agent installed (most amazon AMI's do), has

access to an SSM endpoint)

NEW - System Manager Fleet Manager is now available, which allows connecting graphically to Windows desktops directly

from the AWS console without the need for any command line access or tools, and without any requirement for an RDSH/

RDP client. As the Accelerator configures Systems Manager, this feature "simply works" for most instances deployed within

the Accelerator.

1.1.13. How can I easily access my virtual machines or EC2 instances?

•

•

- Navigate to Systems Manager, open Fleet Manager, select an instance, click "Node Actions" and select "Connect with Remote
Desktop". If you are logging in via AWS SSO, you can seamlessly connect. IAM users must supply valid credentials.

3.1 1.1. Operational Activities

- 99/230 -

Connecting to an Instance

From the AWS Console

Go to: EC2, Instances, select the instance (i.e. ASEA-RDGW), click “Connect”, select Session Manager, Connect

Ideal for Linux or Windows PowerShell users

Everything is fully logged for future reference

Directly through local RDP client using Session Managers tunnel capability:

Provides direct access to your instances/host without any open internet ports on the RDGW instance, using a local/fat

client tool

Install AWS CLI v2 on your PC - available here (uninstall CLIv1 first, if installed)

Install the SSM plugin on your PC - available here

Get AWS temporary credentials from AWS SSO for the account your workload resides (i.e. Ops account when accessing

the ASEA-RDGW instance) by selecting “Command line or programmatic access” instead of “Management Console” and

paste them into a command prompt

i.e. via logging in here: https://xxxxxxx.awsapps.com/start or

This blog describes the process to use SSO to get credentials for the AWS CLI directly without the GUI

Then enter: aws ssm start-session --target "i-12345678901234567" --document-name AWS-StartPortForwardingSession --

parameters portNumber="3389",localPortNumber="56789"--region ca-central-1

Command syntax is slightly different on Linux/Mac

Replace i-1111adddce582b23c with the instance id of your RDGW instance

A tunnel will open

As these are tunnels to proprietary protocols (i.e. RDP/screen scraping) session content is not logged.

Run mstsc/rdp client and connect to 127.0.0.1:56789

By replacing 3389 with a new port for another applications (i.e. SSH running on a Linux instance), you can connect to a

different application type

You can change the local port by changing 56789 to any other valid port number (i.e. connecting to multiple instances at

the same time)

Login with the windows credentials discussed above in the format NETBIOSDOMAIN\User1 (i.e. example\user1)

Your Netbios domain is found here in your config file: "netbios-domain": "example",

Connect to your desktop command line to command line interface of remote Windows or Linux servers, instead of through

console (i.e. no tunnel):

aws ssm start-session --target "i-090c25e64c2d9d276""--region ca-central-1

Replace i-xxx with your instance ID

Everything is fully logged for future reference

If you want to remove the region from your command line, you can:

Type: “aws configure” from command prompt, hit {enter} (key), {enter} (secret), enter: ca-central-1, {enter}

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.1 1.1. Operational Activities

- 100/230 -

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html
https://xxxxxxx.awsapps.com/start
https://aws.amazon.com/blogs/developer/aws-cli-v2-now-supports-aws-single-sign-on/

I ran the state machine but it failed when it tried to delete the default VPC? The state machine cannot delete the

default VPC (Error: VPC has dependencies and cannot be deleted)

You need to ensure that resources don’t exist in the default VPC or else the state machine won't be able to delete it. If you

encounter this error, you can either delete the resources within the VPC or delete the default VPC manually and run the

state machine again.

3.2 1.2. Existing Accounts / Organizations

How do I import an existing AWS account into my Accelerator managed AWS Organization (or what if I created a

new AWS account with a different Organization trust role)?

Ensure you have valid administrative privileges for the account to be invited/added

Add the account to your AWS Organization using standard processes (i.e. Invite/Accept)

this process does NOT create an organization trust role

imported accounts do NOT have the quarantine SCP applied as we don't want to break existing workloads

Login to the account using the existing administrative credentials

Execute the Accelerator provided CloudFormation template to create the required Accelerator bootstrapping role - in the

GitHub repo here: reference-artifacts\Custom-Scripts\Import-Account-CFN-Role-Template.yml

add the account to the Accelerator config file and run the state machine

If you simply created the account with an incorrect role name, you likely need to take extra steps:

Update the Accelerator config file to add the parameter: global-options\ignored-ous = ["UnManagedAccounts"]

In AWS Organizations, create a new OU named UnManagedAccounts (case sensitive)

Move the account to the UnManagedAccounts OU

You can now remove the Quarantine SCP from the account

Assume an administrative role into the account

Execute the Accelerator provided CloudFormation template to create the required Accelerator bootstrapping role

1.1.14. I ran the state machine but it failed when it tried to delete the default VPC?

1.2.1. How do I import an existing AWS account into my Accelerator managed AWS Organization (or what if I

created a new AWS account with a different Organization trust role)?

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.2 1.2. Existing Accounts / Organizations

- 101/230 -

Is it possible to deploy the Accelerator on top of an AWS Organization that I have already installed the AWS Landing

Zone (ALZ) solution into?

Existing ALZ customers are required to uninstall their ALZ deployment before deploying the Accelerator. Please work with

your AWS account team to find the best mechanism to uninstall the ALZ solution (procedures and scripts exist). It is often

easier to migrate AWS accounts to a new Accelerator Organization, per the process detailed in the next FAQ question.

Additionally, please reference the following section of the Installation Guide for additional considerations.

What if I want to move an account from an AWS Organization that has the ALZ deployed into an AWS Organization

running the Accelerator?

Before removing the AWS account from the source organization, terminate the AWS Service Catalog product associated

with the member account that you're interested in moving. Ensuring the product terminates successfully and that there

aren't any remaining CloudFormation stacks in the account that were deployed by the ALZ. You can then remove the

account from the existing Organization and invite it into the new organization. Accounts invited into the Organization do

NOT get the Deny All SCP applied, as we do not want to break existing running workloads. Moving the newly invited

account into its destination OU will trigger the state machine and result in the account being ingested into the Accelerator

and having the guardrails applied per the target OU persona.

For a detailed procedure, please review this document.

1.2.2. Is it possible to deploy the Accelerator on top of an AWS Organization that I have already installed the

AWS Landing Zone (ALZ) solution into?

1.2.3. What if I want to move an account from an AWS Organization that has the ALZ deployed into an AWS

Organization running the Accelerator?

3.2 1.2. Existing Accounts / Organizations

- 102/230 -

3.3 1.3. End User Environment

Is there anything my end users need to be aware of? Why do some of my end users struggle with CloudWatch Log

groups errors?

CloudWatch Log group deletion is prevented for security purposes and bypassing this rule would be a fundamental

violation of security best practices. This protection does NOT exist solely to protect ASEA logs, but ALL log groups. Users

of the Accelerator environment will need to ensure they set CloudFormation stack Log group retention type to RETAIN, or

stack deletes will fail when attempting to delete a stack (as deleting the log group will be blocked) and users will encounter

errors. As repeated stack deployments will be prevented from recreating the same log group name (as it already exists),

end users will either need to check for the existence of the log group before attempting creation, or include a random hash

in the log group name. The Accelerator also sets log group retention for all log groups to value(s) specified by customers in

the config file and prevents end users from setting or changing Log group retentions. When creating new log groups, end

users must either not configure a retention period, or set it to the default NEVER expire or they will also be blocked from

creating the CloudWatch Log group. If applied by bypassing the guardrails, customer specified retention periods on log

group creation will be overridden with the Accelerator specified retention period.

While a security best practice, some end users continue to request this be changed, but you need to ask: Are end users

allowed to go in and clean out logs from Windows Event Viewer (locally or on domain controllers) after testing? Clean out

Linux kernel logs? Apache log histories? The fundamental principal is that all and as many logs as possible will be retained

for a defined retention period (some longer). In the "old days", logs were hidden deep within OS directory structures or

access restricted by IT from developers - now that we make them all centralized, visible, and accessible, end users seem

to think they suddenly need to clean them up. Customers need to establish a usable and scalable log group naming

standard/convention as the first step in moving past this concern, such that they can always find their active logs easily. As

stated, to enable repeated install and removal of stacks during test cycles, end user CloudFormation stacks need to set log

groups to RETAIN and leverage a random hash in log group naming (or check for existence, before creating).

The Accelerator provided SCPs (guardrails/protections) are our recommendations, yet designed to be fully customizable,

enabling any customer to carefully override these defaults to meet their individual requirements. If insistent, we'd suggest

only bypassing the policy on the Sandbox OU, and only for log groups that start with a very specific prefix (not all log

groups). When a customer wants to use the delete capability, they would need to name their log group with the designated

prefix - i.e. opt-in to allow CloudWatch log group deletes.

1.3.1. Is there anything my end users need to be aware of? Why do some of my end users struggle with

CloudWatch Log groups errors?

3.3 1.3. End User Environment

- 103/230 -

How can I leverage Accelerator deployed objects in my IaC? Do I need to manually determine the arn's and object

id's of Accelerator deployed objects to leverage them in my IaC?

Objects deployed by the Accelerator which customers may need to leverage in their own IaC have been populated in

parameters in AWS parameter store for use by the IaC tooling of choice. The Accelerator ensures parameters are deployed

consistently across accounts and OUs, such that a customer's code does not need to be updated when it is moved

between accounts or promoted from Dev to Test to Prod.

Objects of the following types and their associated values are stored in parameter store: VPC, subnet, security group, ELB

(ALB/NLB w/DNS address), IAM policy, IAM role, KMS key, ACM cert, SNS topic, and the firewall replacement variables.

Additionally, setting "populate-all-elbs-in-param-store": true for an account will populates all Accelerator wide ELB

information into parameter store within that account. The sample PBMM configuration files set this value on the perimeter

account, such that ELB information is available to configure centralized ingress capabilities.

1.3.2. How can I leverage Accelerator deployed objects in my IaC? Do I need to manually determine the arn's

and object id's of Accelerator deployed objects to leverage them in my IaC?

3.3 1.3. End User Environment

- 104/230 -

How do I deploy AWS Elastic Beanstalk instances?

If your deployed environment contains an SCP enforcing volume encryption of EC2 instances, your Elastic Beanstalk

deployment will fail.

The SCP will contain an entry like this:

A solution is to encrypt the root volume of the AMI that Elastic Beanstalk uses for your selected platform, and perform a

custom AMI deployment of your Elastic Beanstalk application.

You can gather the AMI that Elastic Beanstalk uses via CLI with the following command:

Once you have gathered the AMI ID successfully, go to the EC2 console and:

Click on the ‘AMIs’ option in the left navigation pane

Search for your AMI after selecting ‘Public Images’ from the dropdown list.

Select the AMI

Go to Actions and Copy AMI

Click on the checkbox to enable ‘Encryption’ and then select "Copy AMI".

Once the AMI is successfully copied, you can use this AMI to specify a custom AMI in your Elastic Beanstalk environments

with root volume encrypted.

3.4 1.4. Upgrades

Can I upgrade directly to the latest release, or must I perform upgrades sequentially?

Yes, currently customers can upgrade from whatever version they have deployed to the latest Accelerator version. There is

no requirement to perform sequential upgrades. In fact, we strongly discourage sequential upgrades.

Given the magnitude of the v1.5.0 release, we have added a one-time requirement that all customers upgrade to a

minimum of v1.3.8 before attempting to upgrade to v1.5.0.

1.3.3. How do I deploy AWS Elastic Beanstalk instances?

{

 "Sid": "EBS1",

 "Effect": "Deny",

 "Action": "ec2:RunInstances",

 "Resource": "arn:aws:ec2:*:*:volume/*",

 "Condition": {

 "Bool": {

 "ec2:Encrypted": "false"

 }

 }

},

aws elasticbeanstalk describe-platform-version --region <YOUR_REGION> --platform-arn <ARN_EB_PLATFORM>

•

•

•

•

•

1.4.1. Can I upgrade directly to the latest release, or must I perform upgrades sequentially?

3.4 1.4. Upgrades

- 105/230 -

Why do I get the error "There were errors while comparing the configuration changes:" when I update the config

file?

In v1.3.0 we added protections to allow customers to verify the scope of impact of their intended changes to the

configuration file. In v1.3.0 and above, the state machine does not allow changes to the config file (other than new

accounts) without providing the scope parameter. Please refer to the State Machine behavior and inputs Guide for more

details.

3.5 1.5. Support Concerns

The Accelerator is written in CDK and deploys CloudFormation, does this restrict the Infrastructure as Code (IaC)

tools that I can use?

No. Customers can choose the IaC framework or tooling of their choice. The tooling used to deploy the Accelerator has no

impact on the automation framework customers use to deploy their applications within the Accelerator environment. It

should be noted that the functionality deployed by the Accelerator is extremely platform specific and would not benefit from

multi-platform IaC frameworks or tooling.

What happens if AWS stops enhancing the Accelerator?

The Accelerator is an open source project, should AWS stop enhancing the solution for any reason, the community has

access to the full codebase, its roadmap and history. The community can enhance, update, fork and take ownership of the

project, as appropriate.

The Accelerator is an AWS CDK based project and synthesizes to native AWS CloudFormation. AWS sub-accounts simply

contain native CloudFormation stacks and associated custom resources, when required. The Accelerator architecture is

such that all CloudFormation stacks are native to each AWS account with no links or ties to code in other AWS accounts or

even other stacks within the same AWS account. This was an important initial design decision.

The Accelerator codebase can be completely uninstalled from the organization management (root) account, without any

impact to the deployed functionality or guardrails. In this situation, guardrail updates and new account provisioning reverts

to a manual process. Should a customer decide they no longer wish to utilize the solution, they can remove the Accelerator

codebase without any impact to deployed resources and go back to doing things natively in AWS as they did before they

deployed the Accelerator. By adopting the Accelerator, customers are not locking themselves in or making a one-way door

decision.

1.4.2. Why do I get the error "There were errors while comparing the configuration changes:" when I update

the config file?

1.5.1. The Accelerator is written in CDK and deploys CloudFormation, does this restrict the Infrastructure as

Code (IaC) tools that I can use?

1.5.2. What happens if AWS stops enhancing the Accelerator?

3.5 1.5. Support Concerns

- 106/230 -

What level of Support will the ASEA have from AWS Support?

The majority of the solution leverages native AWS services which are fully supported by AWS Support. Additionally, the

Accelerator is an AWS CDK based project and synthesizes to native AWS CloudFormation. AWS sub-accounts simply

contain native CloudFormation stacks and associated custom resources (when required). The Accelerator architecture is

such that all CloudFormation stacks are native to each AWS account with no direct links or ties to code in other AWS

accounts (no stacksets, no local CDK). This was an important project design decision, keeping deployed functionality in

independent local CloudFormation stacks and decoupled from solution code, which allows AWS support to effectively

troubleshoot and diagnose issues local to the sub-account.

As the Accelerator also includes code, anything specifically related to the Accelerator codebase will be only supported on a

"best effort" basis by AWS support, as AWS support does not support custom code. The first line of support for the

codebase is typically your local AWS team (your SA, TAM, ProServe and/or AWS Partner). As an open source project,

customers can file requests using GitHub Issues against the Accelerator repository or open a discussion in GitHub

discussions. Most customer issues arise during installation and are related to configuration customization or during the

upgrade process.

What does it take to support the Accelerator?

We advise customers to allocate a 1/2 day per quarter to upgrade to the latest Accelerator release.

Customers have indicated that deploying the Accelerator reduces their ongoing operational burden over operating in native

AWS, saving hours of effort every time a new account is provisioned by automating the deployment of the persona

associated with new accounts (guardrails, networking and security). The Accelerator does NOT alleviate a customer's

requirement to learn to effectively operate in the cloud (like monitoring security tooling/carrying out Security Operation

Center (SOC) duties). This effort exists regardless of the existence of the Accelerator.

1.5.3. What level of Support will the ASEA have from AWS Support?

1.5.4. What does it take to support the Accelerator?

3.5 1.5. Support Concerns

- 107/230 -

Is the Accelerator only designed and suitable for Government of Canada or PBMM customers?

No. The Accelerator is targeted at any AWS customer that is looking to automate the deployment and management of a

comprehensive end-to-end multi-account environment in AWS. It is ideally suited for customers interested in achieving a

high security posture in AWS.

The Accelerator is a sophisticated deployment framework that allows for the deployment and management of virtually any

AWS multi-account "Landing Zone" architecture without any code modifications. The Accelerator is actually delivering two

separate and distinct products which can each be used on their own:

the Accelerator the tool, which can deploy virtually any architecture based on a provided config file (no code changes), and;

the Government of Canada (GC) prescriptive PBMM architecture which is delivered as a sample configuration file and

documentation.

The tooling was purposely built to be extremely flexible, as we realized that some customers may not like some of the

opinionated and prescriptive design decisions we made in the GC architecture. Virtually every feature being deployed can

be turned on/off, not be used or can have its configuration adjusted to meet your specific design requirements.

We are working on building a library of sample config files to support additional customer needs and better demonstrate

product capabilities and different architecture patterns. In no way is it required that the prescriptive GC architecture be used

or deployed. Just because we can deploy, for example, an AWS Managed Active Directory, does not mean you need to use

that feature of the solution. Disabling or changing these capabilities also requires zero code changes.

While the prescriptive sample configuration files were originally developed based on GC requirements, they were also

developed following AWS Best Practices. Additionally, many security frameworks around the world have similar and

overlapping security requirements (you can only do security so many ways). The provided architecture is applicable to

many security compliance regimes around the world and not just the GC.

1.5.5. Is the Accelerator only designed and suitable for Government of Canada or PBMM customers?

1.

2.

3.5 1.5. Support Concerns

- 108/230 -

3.6 1.6. Deployed Functionality

I wish to be in compliance with the 12 GC TBS Guardrails, what don't you cover with the provided sample

architecture?

The AWS SEA allows for a lot of flexibility in deployed architectures. If used, the provided PBMM sample architecture was

designed to help deliver on the technical portion of all 12 of the GC guardrails, when automation was possible.

What don't we cover? Assigning MFA to users is a manual process. Specifically, you need to procure Yubikeys for your

root/break glass users, and enable a suitable form of MFA for all other users (i.e. virtual, email, other). The guardrails also

include some organizational processes (i.e. break glass procedures, or signing an MOU with CCCS) which customers will

need to work through independently.

While AWS is providing the tools to help customer be compliant with the 12 PBMM guardrails (which were developed in

collaboration with the GC) - it's up to each customers ITSec organization to assess and determine if the deployed controls

actually meet their security requirements.

Finally, while we started with a goal of delivering on the 12 guardrails, we believe we have extended well beyond those

security controls, to further help customers move towards meeting the full PBMM technical control profile (official

documentation is weak in this area at this time).

Does the ALB perform SSL offloading?

As configured - the perimeter ALB decrypts incoming traffic using its certificate and then re-encrypts it with the certificate for

the back-end ALB. The front-end and back-end ALB's can use the same or different certs. If the Firewall needs to inspect

the traffic, it also needs the backend certificate be manually installed.

1.6.1. I wish to be in compliance with the 12 GC TBS Guardrails, what don't you cover with the provided

sample architecture?

1.6.2. Does the ALB perform SSL offloading?

3.6 1.6. Deployed Functionality

- 109/230 -

What is the recommended approach to manage the ALB certificates deployed by the Accelerator?

The Accelerator installation process allows customers to provide their own certificates (either self-signed or generated by a

CA), to enable quick and easy installation and allowing customers to test end-to-end traffic flows. After the initial

installation, we recommend customers leverage AWS Certificate Manager (ACM) to easily provision, manage, and deploy

public and private SSL/TLS certificates. ACM helps manage the challenges of maintaining certificates, including certificate

rotation and renewal, so you don’t have to worry about expiring certificates.

1.6.3. What is the recommended approach to manage the ALB certificates deployed by the Accelerator?

3.6 1.6. Deployed Functionality

- 110/230 -

The Accelerator provides 3 mechanisms to enable utilizing certificates with ALB's:

3.6 1.6. Deployed Functionality

- 111/230 -

Method 1 - IMPORT a certificate into AWS Certificate Manager from a 3rd party product

When using a certificate that does not have a certificate chain (usually this is the case with Self-Signed)

When using a certificate that has a certificate chain (usually this is the case when signed by a Certificate Authority with a

CA Bundle)

this mechanism allows a customer to generate certificates using their existing tools and processes and import 3rd party

certificates into AWS Certificate Manager for use in AWS

Self-Signed certificates should NOT be used for production (samples were provided simply to demonstrate functionality)

both a .key and a .crt file must be supplied in the customers S3 input bucket

"cert" must contain only the certificate and not the full chain

"chain" is an optional attribute that contains the certificate chain. This is generally used when importing a CA signed

certificate

this will create a certificate in ACM and a secret in secrets manager named accelerator/certificates/My-Cert in the

specified AWS account(s), which points to the newly imported certificates ARN

•

•

 "certificates": [

 {

 "name": "My-Cert",

 "type": "import",

 "priv-key": "certs/example1-cert.key",

 "cert": "certs/example1-cert.crt"

 }

]

•

 "certificates": [

 {

 "name": "My-Cert",

 "type": "import",

 "priv-key": "certs/example1-cert.key",

 "cert": "certs/example1-cert.crt",

 "chain": "certs/example1-cert.chain"

 }

]

•

•

•

•

•

•

3.6 1.6. Deployed Functionality

- 112/230 -

Method 2 - REQUEST AWS Certificate Manager generate a certificate

this mechanism allows a customer to generate new public certificates directly in ACM

both DNS and EMAIL validation mechanisms are supported (DNS recommended)

this requires a Public DNS zone be properly configured to validate you are legally entitled to issue certificates for the

domain

this will also create a certificate in ACM and a secret in secrets manager named accelerator/certificates/My-Cert in

the specified AWS account(s), which points to the newly imported certificates ARN

this mechanism should NOT be used on new installs, skip certificate and ALB deployment during initial deployment

(removing them from the config file) and simply add on a subsequent state machine execution

Process:

you need a public DNS domain properly registered and configured to publicly resolve the domain(s) you will be generating

certificates for (i.e. example.com)

domains can be purchased and configured in Amazon Route53 or through any 3rd party registrar and DNS service provider

in Accelerator phase 1, the cert is generated, but the stack does NOT complete deploying (i.e. it waits) until certificate

validation is complete

during deployment, go to the AWS account in question, open ACM and the newly requested certificate. Document the

authorization CNAME record required to validate certificate generation

add the CNAME record to the zone in bullet 1 (in Route53 or 3rd party DNS provider) (documented here)

after a few minutes the certificate will validate and switch to Issued status

Accelerator phase 1 will finish (as long as the certificate is validated before the Phase 1 credentials time-out after 60-

minutes)

the ALB will deploy in a later phase with the specified certificate

Method 3 - Manually generate a certificate in ACM

this mechanism allows a customer to manually generate certificates directly in the ACM interface for use by the Accelerator

this mechanism should NOT be used on new installs, skip certificate and ALB deployment during initial deployment

(removing them from the config file) and simply add on a subsequent state machine execution

Process:

go to the AWS account for which you plan to deploy an ALB and open ACM

generate a certificate, documenting the certificates ARN

open Secrets manager and generate a new secret of the format accelerator/certificates/My-Cert (of type Plaintext

under Other type of secrets), where My-Cert is the unique name you will use to reference this certificate

In all three mechanisms a secret will exist in Secrets Manager named accelerator/certificates/My-Cert which

contains the ARN of the certificate to be used.

•

"certificates": [

 {

 "name": "My-Cert",

 "type": "request",

 "domain": "*.example.com",

 "validation": "DNS",

 "san": ["www.example.com"]

 }

]

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.6 1.6. Deployed Functionality

- 113/230 -

https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-validate-dns.html

In the Accelerator config file, find the definition of the ALB for that AWS account and specify My-Cert for the ALB cert-

name

The state machine will fail if you specify a certificate in any ALB which is not defined in Secrets Manager in the local

account.

We suggest the most effective mechanism for leveraging ACM is by adding CNAME authorization records to the relevant

DNS domains using Method 2, but may not appropriate right for all customers.

Why do we have rsyslog servers? I thought everything was sent to CloudWatch?

The rsyslog servers are included to accept logs for appliances and third party applications that do not natively support the

CloudWatch Agent from any account within a customers Organization. These logs are then immediately forwarded to

CloudWatch Logs within the account the rsyslog servers are deployed (Operations) and are also copied to the S3

immutable bucket in the log-archive account. Logs are only persisted on the rsyslog hosts for 24 hours. The rsyslog servers

are required to centralize the 3rd party firewall logs (Fortinet Fortigate).

Can you deploy the solution without Fortinet Firewall Licenses?

Yes, if license files are not provided, the firewalls will come up configured and route traffic, but customers will have no

mechanism to manage the firewalls/change the configuration until a valid license file is added. If invalid licence files are

provided, the firewalls will fail to load the provided configuration, will not enable routing, will not bring up the VPN tunnels

and will not be manageable. Customers will need to either remove and redeploy the firewalls, or manually configure them.

If performing a test deployment, please work with your local Fortinet account team to discuss any options for temporary

evaluation licenses.

Additionally, several additional firewall options are now available, including using AWS Network Firewall, a native AWS

service.

•

"alb": [

 {

 "cert-name": "My-Cert"

 }

]

•

1.6.4. Why do we have rsyslog servers? I thought everything was sent to CloudWatch?

1.6.5. Can you deploy the solution without Fortinet Firewall Licenses?

3.6 1.6. Deployed Functionality

- 114/230 -

I installed additional software on my Accelerator deployed RDGW / rsyslog host, where did it go?

The RDGW and rsyslog hosts are members of auto-scaling groups. These auto-scaling groups have been configured to

refresh instances in the pool on a regular basis (7-days in the current sample config files). This ensures these instances are

always clean. Additionally, on every execution of the Accelerator state machine the ASG are updated to the latest AWS AMI

for the instances. When the auto-scaling group refreshes its instances, they will be redeployed with the latest patch release

of the AMI/OS. It is recommended that the state machine be executed monthly to ensure the latest AMI's are always in use.

Customers wanting to install additional software on these instances should either a) update the automated deployment

scripts to install the new software on new instance launch, or b) create and specify a custom AMI in the Accelerator

configuration file which has the software pre-installed ensuring they are also managing patch compliance on the instance

through some other mechanism.

At any time, customers can terminate the RDGW or rsyslog hosts and they will automatically be re-created from the base

images with the latest patch available at the time of the last Accelerator State Machine execution.

Some sample configurations provide NACLs and Security Groups. Is that enough?

Security group egress rules are often used in 'allow all' mode (0.0.0.0/0), with the focus primarily being on consistently

allow listing required ingress traffic (centralized ingress/egress controls are in-place using the perimeter firewalls). This

ensures day to day activities like patching, access to DNS, or to directory services access can function on instances

without friction.

The Accelerator provided sample security groups in the workload accounts offer a good balance that considers both

security, ease of operations, and frictionless development. They allow developers to focus on developing, enabling them to

simply use the pre-created security constructs for their workloads, and avoid the creation of wide-open security groups.

Developers can equally choose to create more appropriate least-privilege security groups more suitable for their

application, if they are skilled in this area. It is expected as an application is promoted through the SDLC cycle from Dev

through Test to Prod, these security groups will be further refined by the extended customers teams to further reduce

privilege, as appropriate. It is expected that each customer will review and tailor their Security Groups based on their own

security requirements. The provided security groups ensures day to day activities like patching, access to DNS, or to

directory services access can function on instances without friction, with the understanding further protections are providing

by the central ingress/egress firewalls.

The use of NACLs are general discouraged, but leveraged in this architecture as a defense-in-depth mechanism. Security

groups should be used as the primary access control mechanism. As with security groups, we encourage customers to

review and tailor their NACLs based on their own security requirements.

1.6.6. I installed additional software on my Accelerator deployed RDGW / rsyslog host, where did it go?

1.6.7. Some sample configurations provide NACLs and Security Groups. Is that enough?

3.6 1.6. Deployed Functionality

- 115/230 -

Can I deploy the solution as the account root user?

No, you cannot install as the root user. The root user has no ability to assume roles which is a requirement to configure the

sub-accounts and will prevent the deployment. As per the installation instructions, you require an IAM user with the

AdministratorAccess policy attached.

Is the Organizational Management root account monitored similarly to the other accounts in the organization?

Yes, all accounts including the Organization Management or root account have the same monitoring and logging services

enabled. When supported, AWS security services like GuardDuty, Macie, and Security Hub have their delegated

administrator account configured as the "security" account. These tools can be used within each local account (including

the Organization Management account) within the organization to gain account level visibility or within the Security account

for Organization wide visibility. For more information about monitoring and logging refer to architecture documentation.

How are the perimeter firewall configurations and licensing managed after deployment?

While you deploy the perimeter firewalls with the Accelerator you will continue to manage firewall updates, configuration

changes, and license renewals from the respective firewall management interface and not from the Accelerator config file.

As these changes are not managed by the Accelerator you do not need to rerun the state machine to implement or track

any of these changes. You can update the AMI of the 3rd party firewalls using the Accelerator, you must first remove the

existing firewalls and redeploy them (as the Elastic IP's (EIP's) will block a parallel deployment) or deploy a second parallel

firewall cluster and de-provision the first cluster when ready.

1.6.8. Can I deploy the solution as the account root user?

1.6.9. Is the Organizational Management root account monitored similarly to the other accounts in the

organization?

1.6.10. How are the perimeter firewall configurations and licensing managed after deployment?

3.6 1.6. Deployed Functionality

- 116/230 -

Can the Fortinet Firewall deployments use static private IP address assignments?

Yes, the "port" stanza in the configuration file can support a private static IP address assignment from the AZ and subnet.

Care must be exercised to assure the assigned IP address is within the correct subnet and availability zone. Consideration

must also be given to the Amazon reserved IP addresses (first three addresses, and the last) within subnets when

choosing an IP Address to assign.

Using the config.example.json as a reference, static IP Assignments would look like this in the ports: stanza of the

firewall deployment.

Where private-ips are not present for the subnet or availability zone an address will be assigned automatically from

available addresses when the firewall instance is created.

1.6.11. Can the Fortinet Firewall deployments use static private IP address assignments?

"ports": [

 {

 "name": "Public",

 "subnet": "Public",

 "create-eip": true,

 "create-cgw": true,

 "private-ips": [

 {

 "az": "a",

 "ip": "100.96.250.4"

 },

 {

 "az": "b",

 "ip": "100.96.250.132"

 }

]

 },

 {

 "name": "OnPremise",

 "subnet": "OnPremise",

 "create-eip": false,

 "create-cgw": false,

 "private-ips": [

 {

 "az": "a",

 "ip": "100.96.250.68"

 },

 {

 "az": "b",

 "ip": "100.96.250.196"

 }

]

 }

 ...

],

3.6 1.6. Deployed Functionality

- 117/230 -

I've noticed CloudTrail logs and in certain situation VPC flow logs are stored in the centralized log-archive account

logging bucket twice?

Yes. CloudTrail is configured to send its logs directly to S3 for centralized immutable log retention. CloudTrail is also

configured to send it's logs to a centralized Organizational CloudWatch Log group such that the trail can be a) easily

queried online using CloudWatch Insights across all AWS accounts in the organization, and b) to enable alerting based on

undesirable API activity using CloudWatch Metrics and Alarms. All CloudWatch Log groups are also configured to be sent,

using Amazon Kinesis, to S3 for centralized immutable log retention.

VPC flow log destinations can be configured in the config file. The example config files are set to send the VPC flow logs to

both S3 and CloudWatch Logs by default for the same reasons as CloudTrail.

To reduce the duplicate long-term storage of these two specific CloudWatch Log types, customers can set cwl-glbl-

exclusions under central-log-services to: ["/${ACCELERATOR_PREFIX_ND}/flowlogs/*", "/$

{ACCELERATOR_PREFIX_ND}/CloudTrail*"] to prevent these specifically named log groups from being stored on S3. This

setting also prevents the Accelerator from setting the customer desired log group retention period defined in the config file,

once implemented, for those log groups. Therefore, we do not recommend this exception be applied during the initial

installation, as the retention setting on these CWL groups will remain the default (infinite). If cwl-glbl-exclusions is set

after initial install, the defined retention will be configured during install and will remain set to the value present when the

exception was applied to those log groups. This allows logs to be stored in CloudWatch Logs for quick and easy online

access (short-retention only), and stored in S3 for long-term retention and access.

Side note: CloudTrail S3 data plane logs are enabled at the Organizational level, meaning all S3 bucket access is logged.

As CloudTrail is writing to a bucket within the Organization, CloudTrail itself is accessing the bucket, seemingly creating a

cyclical loop. As CloudTrail writes to S3 in 5-10min batches, CloudTrail will actually only cause one extra log 'entry' every

5-10minutes and not per S3 event, mitigating major concerns. Today, with an Organization trail logging data plane events

for all buckets - there is no way to exclude any one bucket. But - having clear view of who accessed/changed logs,

including AWS services, is important.

1.6.12. I've noticed CloudTrail logs and in certain situation VPC flow logs are stored in the centralized log-

archive account logging bucket twice?

3.6 1.6. Deployed Functionality

- 118/230 -

I need a Route53 Private Hosted Zone in my workload account. How shall I proceed?

The workload account requires creating a temporary local VPC before creating the Private Hosted Zone (PHZ). Creating a

PHZ in Route53 requires association with a VPC. You cannot specify a shared VPC when creating the PHZ, hence the

need for this workaround.

Create the temporary workload account VPC

You can create the temporary VPC during AWS account creation via the ASEA config (preferred way). Insert the "vpc"

JSON object like shown below when using the ASEA config to create an AWS account.

If you don't use the ASEA config you will need to assume the proper ASEA elevated IAM role in the workload account in

order to create the VPC manually.

Create in the workload account a Private Hosted Zone

Using an IAM role assumed in the workload account:

List the VPCs.

Then retrieve the VpcId attribute for the newly created VPC as well as the Id for the shared VPC.

Create the Private Hosted Zone

1.6.13. I need a Route53 Private Hosted Zone in my workload account. How shall I proceed?

"mydevacct": {

 "account-name": "MyDev1",

 "email": "dev1-main@super-corp.co",

 "src-filename": "config.json",

 "ou": "dev",

 "vpc": [

 {

 "deploy": "local",

 "name": "Local",

 "description": "This VPC Temp VPC to create the local hosted zone.",

 "cidr-src": "provided",

 "cidr": [

 {

 "value": "192.168.100.0/24"

 }

],

 "region": "${HOME_REGION}"

 }

]

}

 aws ec2 describe-vpcs

aws route53 create-hosted-zone --name <MY_DOMAIN> --hosted-zone-config PrivateZone=true --vpc VPCRegion=<VPC_REGION>,VPCId=<VPC_ID> --

caller-reference <YOUR_REFERENCE_ID>

3.6 1.6. Deployed Functionality

- 119/230 -

Insert the proper values for:

<MY_DOMAIN>

<VPC_REGION>

<VPC_ID> (id of new the local VPC)

<YOUR_REFERENCE_ID> (can be any value)

Take note of the newly created hosted zone id by looking at the output of the command. The Id is the value after /

hostedzone/ from the Id attribute. For example, the value is Z0123456NWOWQ4HNN40U from "Id": "/hostedzone/

Z0123456NWOWQ4HNN40U" .

Create an authorization to associate with this new zone

While still in the workload account; you need to create an association request authorization to allow the shared VPC to

associate with this newly created Route53 PHZ.

Insert the proper values for:

<ZONE_ID>

<SHARED_VPC_REGiON>

<SHARED_VPC_ID>

Confirm the association request for the shared VPC

After switching to an IAM role in the SharedNetwork account associate the Private Hosted Zone from the workload account.

Insert the proper values for:

<ZONE_ID>

<SHARED_VPC_REGiON>

<SHARED_VPC_ID>

Validate Association and clean-up

Back in the workload account and assuming its IAM role, validate the association using the below command. You should

see two VPCs attached. The local VPC and the shared VPC.

Insert the proper values for:

<ZONE_ID>

You can now dissociate the local VPC from the zone.

•

•

•

•

aws route53 create-vpc-association-authorization --hosted-zone-id <ZONE_ID> --vpc VPCRegion=<SHARED_VPC_REGION>,VPCId=<SHARED_VPC_ID>

•

•

•

aws route53 associate-vpc-with-hosted-zone --hosted-zone-id <ZONE_ID> --vpc VPCRegion=<SHARED_VPC_REGION>,VPCId=<SHARED_VPC_ID>

•

•

•

aws route53 get-hosted-zone --id <ZONE_ID>

•

aws route53 disassociate-vpc-from-hosted-zone --hosted-zone-id <ZONE_ID> --vpc VPCRegion=<VPC_REGION>,VPCId=<VPC_ID>

3.6 1.6. Deployed Functionality

- 120/230 -

Insert the proper values for:

<ZONE_ID>

<VPC_REGiON>

<VPC_ID>

You can now delete the local VPC. We recommend you leverage the ASEA configuration file. Simply the remove the vpc

section from the workload account:

and rerun the State Machine.

How do I create a role which has read access to the log-archive bucket to enabling log forwarding to my favorite

SIEM solution?

You can update the ASEA config file to provision an IAM role that has cross-account access to the Log Archive S3 Buckets.

Attempting to do this outside the ASEA config file is blocked by security guardrails. Additionally, even if the guardrails are

bypassed, it is likely the ASEA will revert any manual changes on subsequent State Machine executions. The below

example creates a Lambda role which is provided permissions to Amazon OpenSearch, S3 Read Only, Lambda VPC

Execution, the Log Archive S3 buckets and the KMS key. Update the below example with the least-privilege policies

needed to meet the requirements of your chosen SIEM solution.

The primary trick, is the use of the "ssm-log-archive-read-only-access": true flag.

As we generally recommend the SIEM be deployed into the Operations account, add the following to the roles array within

the Operations account section in the ASEA config file:

•

•

•

"mydevacct": {

 "account-name": "MyDev1",

 "email": "dev1-main@super-corp.co",

 "src-filename": "config.json",

 "ou": "dev"

}

1.6.14. How do I create a role which has read access to the log-archive bucket to enabling log forwarding to

my favorite SIEM solution?

{

 "role": "SIEM-Lambda-Processor",

 "type": "lambda",

 "ssm-log-archive-read-only-access": true,

 "policies": [

 "AmazonOpenSearchServiceFullAccess",

 "service-role/AWSLambdaVPCAccessExecutionRole",

 "AmazonS3ReadOnlyAccess"

],

 "boundary-policy": "Default-Boundary-Policy"

}

3.6 1.6. Deployed Functionality

- 121/230 -

How do I create a role for use by Azure Sentinel using the new S3 Connector method?

This process is very similar to FAQ #1.6.14, except we need to allow for a cross-cloud role assumption. This will be done in

the Log Archive account, instead of the Operations account.

The following config snippet should be added to the roles array within the Log Archive account section in the ASEA config

file:

The value of the source-account-role above needs to be replaced with the value of organization-admin-role from

your config file (OrganizationAccountAccessRole, AWSCloudFormationStackSetExecutionRole, or

AWSControlTowerExecution).

The above role uses a custom trust policy, and also requires a file of the name sentinel-trust-policy.json be placed

into the iam-policy folder of the customers S3 input bucket. This file must contain the following text:

The IAM account number listed above is a value provided by Microsoft in their documentation (hard-coded to the same

value for all customers).

The value of sts:ExternalId , shown as {CUSTOMER-VALUE-HERE} above, must be replaced with the ID of the Log

Analytics Workspace in your Azure tenant.

This information is based on the requirements published here as of 2022-03-10.

1.6.15. How do I create a role for use by Azure Sentinel using the new S3 Connector method?

 {

 "role": "MicrosoftSentinelRole",

 "type": "account",

 "ssm-log-archive-read-only-access": true,

 "policies": [

 "AmazonSQSReadOnlyAccess",

 "service-role/AWSLambdaSQSQueueExecutionRole",

 "AmazonS3ReadOnlyAccess"

],

 "boundary-policy": "Default-Boundary-Policy",

 "trust-policy": "sentinel-trust-policy.json",

 "source-account": "log-archive",

 "source-account-role": "OrganizationAccountAccessRole"

 }

•

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "AWS": "arn:aws:iam::197857026523:root"

 },

 "Action": "sts:AssumeRole",

 "Condition": {

 "StringEquals": {

 "sts:ExternalId": "{CUSTOMER-VALUE-HERE}"

 }

 }

 }

]

}

•

•

•

3.6 1.6. Deployed Functionality

- 122/230 -

https://docs.microsoft.com/en-us/azure/sentinel/connect-aws?tabs=s3#create-an-aws-assumed-role-and-grant-access-to-the-aws-sentinel-account

Does the ASEA include a full SIEM solution?

We've found a diverse set of differing customer needs and requirements across our customer base. The ASEA:

enables AWS security services like Amazon GuardDuty (a Cloud native IDS solution) and centralizes the consoles of these

tools in the Security account;

audits the entire environment for compliance and consolidates findings from AWS security services in the Security Hub

console in the Security account;

sends prioritized email alerts for Security Hub Findings, Firewall Manager alerts and customizable CloudWatch Alarms;

centralizes logs across the environment in a central bucket in the Log Archive account;

in addition, retains logs locally in CloudWatch Logs for simple query using CloudWatch Insights.

This makes it extremely simple to layer a customer's preferred SIEM solution on top of the ASEA, enabling easy

consumption of the comprehensive set of collected logs and security findings.

Customers ask for examples of what this integration looks like. We've also had a number of customers ask for a reasonably

functional and comprehensive open source SIEM-like solution to provide more advanced dashboarding, log correlation and

search capabilities.

While not a part of the ASEA, we've made the SIEM on Amazon OpenSearch Service available as an ASEA Add-on to

satisfy these requirements.

This independent solution can easily and quickly be deployed on top of the ASEA by following the documentation and using

the scripts available here. This process takes less than an hour.

The overall logging architecture is represented in this diagram:

1.6.16. Does the ASEA include a full SIEM solution?

•

•

•

•

•

3.6 1.6. Deployed Functionality

- 123/230 -

https://github.com/aws-samples/siem-on-amazon-opensearch-service
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/main/reference-artifacts/Add-ons/opensiem

Why are only select interface endpoints provisioned in the sample configuration files?

For economic reasons, most of the sample configuration files only include the following minimum set of required interface endpoints:

"ec2", "ec2messages", "ssm", "ssmmessages", "secretsmanager", "cloudformation", "kms", "logs", "monitoring"

The full sample configuration file included all interface endpoints that existed in the Canada (Central) region at the time the configuration file was

originally developed:

"access-analyzer", "acm-pca", "application-autoscaling", "appmesh-envoy-management", "athena", "autoscaling", "autoscaling-plans",

"awsconnector", "cassandra", "clouddirectory", "cloudformation", "cloudtrail", "codebuild", "codecommit", "codepipeline", "config", "datasync", "ebs",

"ec2", "ec2messages", "ecr.api", "ecr.dkr", "ecs", "ecs-agent", "ecs-telemetry", "elasticbeanstalk", "elasticbeanstalk-health", "elasticfilesystem",

"elasticloadbalancing", "elasticmapreduce", "email-smtp", "events", "execute-api", "git-codecommit", "glue", "kinesis-firehose", "kinesis-streams",

"kms", "license-manager", "logs", "macie2", "monitoring", "notebook", "sagemaker.api", "sagemaker.runtime", "secretsmanager", "servicecatalog",

"sms", "sns", "sqs", "ssm", "ssmmessages", "states", "storagegateway", "sts", "synthetics", "transfer", "transfer.server", "workspaces"

Since that time these additional endpoints have been launched in the ca-central-1 region and can be optionally added to customer configuration files

to make them accessible from private address space:

"airflow.api", "airflow.env", "airflow.ops", "app-integrations", "appstream.api", "appstream.streaming", "auditmanager", "backup", "backup-gateway",

"batch", "cloudhsmv2", "codedeploy", "codedeploy-commands-secure", "codestar-connections.api", "comprehend", "comprehendmedical",

"databrew", "dms", "elasticache", "emr-containers", "finspace", "finspace-api", "fis", "fsx", "greengrass", "imagebuilder", "inspector2", "iot.data",

"iot.fleethub.api", "iotsitewise.api", "iotsitewise.data", "kendra", "lakeformation", "lambda", "memory-db", "mgn", "models-v2-lex", "nimble",

"panorama", "profile", "qldb.session", "rds", "rds-data", "redshift", "redshift-data", "rekognition", "runtime-v2-lex", "sagemaker.featurestore-runtime",

"securityhub", "servicecatalog-appregistry", "ssm-contacts", "ssm-incidents", "sync-states", "textract", "transcribe", "transcribestreaming", "translate",

"xray"

The aws.sagemaker.ca-central-1.studio interface endpoint was also launched, but cannot be auto-deployed by the Accelerator at this time as it does

not utilize standardized naming and requires a code update to enable deployment.

Additional endpoints may exist in other AWS regions. Any endpoint can be added to any Accelerator configuration file, as long as it follows the

standardized endpoint naming convention (e.g. com.amazonaws.{region}.{service}).

1.6.17. Why are only select interface endpoints provisioned in the sample configuration files?

3.6 1.6. Deployed Functionality

- 124/230 -

3.7 1.7. Network Architecture

We want to securely connect our on-premises networks/datacenters to our AWS Cloud PBMM tenancy, what does

AWS you recommend?

We recommend customers create a new AWS sub-account in your organization in the Infrastructure OU to “own” the Direct

Connect (DX), segregating Direct Connect management and billing from other organization activities. Once provisioned you

would create a Public VIF on the DX in this account. You can also create additional Private VIF’s when and if required, and

share them directly with any sub-account that needs to consume them.

We recommend customers then inter-connect directly to the Transit Gateway, in the Shared Network sub-account, from

your on-premises network/datacenters.

Initiate IPSec VPN tunnels from on-premises to the TGW using BGP w/ECMP to scale and balance the traffic. Equal Cost

Multi-Pathing (ECMP) is used to balance the traffic across the available VPN tunnels.

You need to create as many VPN attachments to the TGW as is required to meet your bandwidth requirements or DX

capacity. Today IPSec attachments are limited to 1.25 Gbps each (10 Gbps would require 8 attachments) and is scalable to

50 Gbps.

Each VPN attachment would comprise two tunnels (active/passive), each connecting to a different on-premises firewall/

VPN appliance.

The VPN attachments would then be connected to an appropriately configured route table on the TGW. TGW route tables

provide VRF like segregation capabilities, allowing customers to control which of their cloud based networks are allowed to

communicate on-premises, or visa-versa.

This architecture is fully managed and easy to manage, highly available, scalable, cost effective, and enables customers to

reserve all their 3rd party Perimeter firewall capacity for public or internet facing traffic.

(This guidance will be updated once MACSEC is broadly available across AWS transit centers)

Does this configuration violate PBMM / ITSG-22/38/33 principals?

No. Data center interconnects are not zoning boundaries (or ZIPs). Additionally, in many cases the on-premises VPN

termination device used to interconnect to the cloud either contains, or is placed in-line with firewall and/or inspection

devices. Customers insistent on placing a firewall between datacenters can enable the appropriate filtering or inspection on

these on-premise devices. Enabling the same capabilities inside AWS would mean a customer is inspecting both ends of

the same wire, a pointless activity. The TGW approach is being used by several gov’t PBMM customers.

Additionally, it should be noted that workloads in all the AWS accounts are fully protected using AWS Security Groups

(stateful firewalls) wrapped around each and every instance comprising a workload.

1.7.1. We want to securely connect our on-premises networks/datacenters to our AWS Cloud PBMM tenancy,

what does AWS you recommend?

•

•

•

1.7.2. Does this configuration violate PBMM / ITSG-22/38/33 principals?

3.7 1.7. Network Architecture

- 125/230 -

Why do you NOT recommend using a VGW on the perimeter VPC?

The VGW solution was not designed to support an enterprise cloud environment – it was designed to provide single VPC

connectivity. The VGW solution offers lower availability than other options as it relies on VPC route tables to steer traffic,

which need to be updated using custom scripts in the event the failure of an appliance or availability zone. The VGW

solution is typically harder to maintain and troubleshoot. The VGW solution has limited scalability, as the VGW only

supports a single active connection and does not support BGP or ECMP (i.e. supports a maximum bandwidth of

1.25Gbps). Most customers providing enterprise cloud connectivity have switch away from this approach. This approach is

highly discouraged.

Why do you NOT recommend connecting directly to the 3rd party firewall cluster in the perimeter account? (not

GWLB, not NFW)

This approach was common with AWS customers before the TGW was introduced, with many customers upgrading or

considering upgrading to the TGW approach. We also have some customers using this architecture based on a very

specific limitation of the customer’s Direct Connect architecture, these customers would also like to migrate to the TGW

approach, if they could.

While viable, this approach adds unneeded complexity, reduces cloud availability, is expensive to scale, and reduces

bandwidth to internet facing workloads. This solution doubles the IPSec VPN tunnels using BGP w/ECMP requirements as

it needs tunnels on both sides of the firewall. In this configuration each firewall appliance typically only provides a single

pair of IPSec connections supporting marginally more bandwidth than the TGW VPN attachments. Adding tunnels and

bandwidth requires adding firewall appliances. Stateful capabilities typically need to be disabled due to performance and

asymmetric routing challenges. This typically means a very expensive device is being deployed inside AWS simply to

terminate a VPN tunnel.

What if I really want to inspect this traffic inside AWS, but like the TGW architecture?

Customers who insist on inspecting the ground to cloud traffic inside AWS can do this with the proposed TGW architecture.

The TGW route tables can be adjusted to hairpin the traffic through either a dedicated Inspection VPC, or to the Perimeter

account firewall cluster for inspection. The Inspection VPC option could leverage 3rd party firewalls in an autoscaling group

behind a Gateway Load Balancer, or leverage AWS network firewall to inspection traffic. To maximize internet throughput,

the Inspection VPC option is generally recommended. While we do not feel inspection is needed in this situation, it is

possible.

1.7.3. Why do you NOT recommend using a VGW on the perimeter VPC?

1.7.4. Why do you NOT recommend connecting directly to the 3rd party firewall cluster in the perimeter

account? (not GWLB, not NFW)

1.7.5. What if I really want to inspect this traffic inside AWS, but like the TGW architecture?

3.7 1.7. Network Architecture

- 126/230 -

What does the traffic flow look like for an application running in a workload account?

The perimeter (ingress/egress) account typically contains two ALB's, one for production workloads and another for Dev/Test

workloads. The Dev/Test ALB should be locked to restrict access to on-premises users (using a security group) or have

authentication enabled to prevent Dev/Test workloads from being exposed to the internet. Additionally, each workload

account (Dev/Test/Prod) contains a local (back-end) ALB.

AWS Web Application Firewall (WAF) should be enabled on both front-end and back-end ALB's. The Front-end WAF would

contain rate limiting, scaling and generic rules. The back-end WAF would contain workload specific rules (i.e. SQL

injection). As WAF is essentially a temporary fix for broken applications before a developer can fix the issue, these rules

typically require the close involvement of the application team. Rules can be centrally managed across all WAF instances

using AWS Firewall Manager from the Security account.

The front-end ALB is then configured to target the back-end ALB using the process described in the Post Installation

section of the installation guide, step 2 (Configure the new alb-forwarding feature (added in v1.5.0) . This enables

configuring different DNS names and/or paths to different back-end ALB's using the ASEA's alb-forwarder. We recommend

moving away from the NAT to DNS mechanism used in previous released as it was too complex, does not work with bump-

in-the-wire inspection devices (NFW, GWLB), and only available on a limited number of 3rd party firewalls.

This implementation allows workload owners to have complete control of workloads in a local account including the ELB

configuration, and allow site names and paths to be defined and setup at sub-account creation time (instead of during

development) to enable publishing publicly or on-premises in a rapid agile manner.

This overall flow is depicted in this diagram:

1.7.6. What does the traffic flow look like for an application running in a workload account?

3.7 1.7. Network Architecture

- 127/230 -

How does CloudFront and API Gateway fit with the answer from question 1.7.6?

The perimeter account is focused on protecting legacy IaaS based workloads. Cloud Native applications including

CloudFront and API Gateway should be provisioned directly in the same account as the workload and should NOT traverse

the perimeter account.

These services must still be appropriately configured. This includes ensuring both WAF and logging are enabled on each

endpoint.

The GC guidance on Cloud First patterns and anti-patterns can be downloaded here.

1.7.7. How does CloudFront and API Gateway fit with the answer from question 1.7.6?

3.7 1.7. Network Architecture

- 128/230 -

https://wiki.gccollab.ca/images/7/7a/API_First_Architecture_Patterns_EN_Endorsed.docx

4. Operations & Troubleshooting

4.1 Accelerator Operations & Troubleshooting Guide

This document is targeted at individuals installing or executing the AWS Secure Environment Accelerator. It is intended to guide individuals who are

executing the Accelerator by providing an understanding as to what happens at each point throughout execution and to assist in troubleshooting state

machine failures and/or errors. This is one component of the provided documentation package and should be read after the Installation Guide, but

before the Developer Guide.

System Overview

Troubleshooting

Common Tasks

•

•

•

4. Operations & Troubleshooting

- 129/230 -

4.2 1. System Overview

This document is targeted at individuals installing or executing the AWS Secure Environment Accelerator. It is intended to guide individuals who are

executing the Accelerator by providing an understanding as to what happens at each point throughout execution and to assist in troubleshooting state

machine failures and/or errors. This is one component of the provided documentation package and should be read after the Installation Guide, but

before the Developer Guide.

4.2.1 1.1. Overview

The system can be thought of in two levels. The first level of the system consists of Accelerator stacks and resources. Let's call these the Accelerator-

management resource. The second level of the system consists of stacks and resources that are deployed by the Accelerator-management resource.

Let's call these the Accelerator-managed resources. The Accelerator-management resources are responsible for deploying the Accelerator-managed

resources.

There are two Accelerator-management stacks:

the Installer stack that is responsible for creating the next listed stack;

the Initial Setup stack. This stack is responsible for reading configuration file and creating Accelerator-managed resources in the relevant

accounts.

There are multiple Accelerator-managed stacks. Currently there are as many as twelve Accelerator-managed stacks per managed account.

The figure below shows a zoomed-out overview of the Accelerator. The top of the overview shows the Accelerator-management resources, i.e. the

Installer stack and the Initial Setup stack. The bottom of the overview shows the Accelerator-managed resources in the different accounts.

•

•

4.2 1. System Overview

- 130/230 -

4.2.1 1.1. Overview

- 131/230 -

4.2.2 1.2. Installer Stack

The Accelerator-management Installer stack contains the necessary resources to deploy the Accelerator-management Initial Setup stack in

an AWS account. This AWS account will be referred to as the 'root' account in this document.

The Installer stack consists of the following resources:

ASEA-InstallerPipeline : this is a AWS::CodePipeline::Pipeline that pulls the latest Accelerator code from GitHub. It launches the CodeBuild

project ASEA-InstallerProject_pl , executes the ASEA-Installer-SaveApplicationVersion Lambda and launches the Accelerator state

machine.

ASEA-InstallerProject_pl : this is a AWS::CodeBuild::Project that installs the Accelerator in AWS account.

ASEA-Installer-SaveApplicationVersion : this is a AWS::Lambda::Function that stores the current Accelerator version into Parameter Store.

ASEA-Installer-StartExecution : this is a AWS::Lambda::Function that launches the Accelerator after CodeBuild deploys the Accelerator.

Creation of AWS::DynamoDB::Table - ASEA-Parameters and ASEA-Outputs which are used for the internal operation of the Accelerator. ASEA-

Outputs is used to share CloudFormation stack outputs between regions, stacks and phases. ASEA-Parameters is used to various configuration

items like managed accounts, organizations structure, and limits.

•

•

•

•

•

4.2.2 1.2. Installer Stack

- 132/230 -

The ASEA-InstallerPipeline starts when first installed using the CloudFormation template. The administrator can also start the pipeline manually

by clicking the Release Change button in the AWS Console.

This starts the ASEA-InstallerProject_pl CodeBuild project. The CodeBuild project uses the GitHub source artifact. The CodeBuild projects spins

up a new Linux instances and installs the Accelerator dependencies and starts the deployment of the Accelerator using the AWS Cloud Development

Kit.

CDK bootstraps its environment and creates the CDKToolkit stack in the AWS account. It creates the S3 bucket cdktoolkit-stagingbucket-* and

the ECR repository aws-cdk/assets .

4.2.2 1.2. Installer Stack

- 133/230 -

https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html
https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html

CDK copies assets to the bootstrap bucket and bootstrap repository that are used by the Accelerator. The assets that are stored on S3 include default

IAM policies, default SCPs, default firewall configuration. The assets that are pushed to ECR include the Accelerator Docker build image. This Docker

image is responsible for deploying Accelerator resources using CDK.

CDK finally deploys the Initial Setup stack. The Accelerator state machine is described in the next section.

This diagram depicts the Accelerator Installer CodePipeline as of v1.2.1:

4.2.2 1.2. Installer Stack

- 134/230 -

4.2.2 1.2. Installer Stack

- 135/230 -

Once the Code Pipeline completes successfully:

the Accelerator codebase was pulled from GitHub

the Accelerator codebase was deployed/installed in the Organization Management (root) AWS account

parameter store /accelerator/version was updated with the new version information

this provides a full history of all Accelerator versions and upgrades

the newly installed Accelerator state machine is started

At this time the resources deployed by the Installer Stack are no longer required. The Installer stack could be removed (which would remove the

Code Pipeline) with no impact on Accelerator functionality.

If the Installer Stack was removed, it would need to be re-installed to upgrade the Accelerator. If the stack was not removed, an Accelerator codebase

upgrade often only requires updating a single stack parameter to point to the latest Accelerator code branch, and re-releasing the pipeline. No files to

manually copy, change or update, an upgrade can be initiated with a simple variable update.

•

•

•

•

•

4.2.2 1.2. Installer Stack

- 136/230 -

4.2.3 1.3. Initial Setup Stack

The Accelerator-management Initial Setup stack, named ASEA-InitialSetup , consists of a state machine, named ASEA-MainStateMachine_sm ,

that executes various steps to create the Accelerator-managed stacks and resources in the Accelerator-managed accounts. Using a state machine,

we can clearly define the deployment process and systematically control branches of execution and handle exceptions.

The Accelerator comprises a primary state machine ASEA-MainStateMachine_sm , and nine supporting state machines (as of v1.2.1). Customer will

only ever Execute the ASEA-MainStateMachine_sm . All troubleshooting will also typically begin with the ASEA-MainStateMachine_sm .

The image below depicts the latest state ASEA-MainStateMachine_sm machine. Each green or white square in the image represents a step in the

state machine. This all green diagram represents a successul Accelerator state machine execution.

4.2.3 1.3. Initial Setup Stack

- 137/230 -

4.2.3 1.3. Initial Setup Stack

- 138/230 -

Notice the extremely linear state machine design. This was done to reduce complexity and ease troubleshooting. You may notice a small fork in the

state machine. The left path is executed if the Accelerator is deployed on top of an ALZ, The right path is executed if the Accelerator is deployed as a

standalone solution. If we eventually add a Control Tower deployment option, it is likely it could also leverage the existing ALZ path.

The state machine contains three different types of steps:

steps that execute a Lambda function;

steps that start another state machine, e.g. Create Accounts step;

steps that start another state machine that starts a CodeBuild project, e.g. the Phase {-1,0,1,2,3,4,5} steps.

The stack additionally consists of the following resources:

AWS::CodeBuild::Project

ASEA-Deploy or ASEA-DeployPrebuilt

AWS::CodeCommit::Repository

ASEA-Config-Repo

AWS::IAM::Role

ASEA-L-SFN-MasterRole

ASEA-L-SFN-Execution

AWS::Lambda::Function

A Lambda function for every Lambda function step in the state machine.

AWS::StepFunctions::StateMachine

ASEA-ALZCreateAccount_sm : See Create Landing Zone Account;

ASEA-OrgCreateAccount_sm : See Create Organization Account;

ASEA-InstallCfnRoleMaster_sm : See Install CloudFormation Execution Role;

ASEA-InstallRoles_sm : See Install Execution Roles;

ASEA-DeleteDefaultVpcs_sfn : See Delete Default VPCs;

ASEA-CodeBuild_sm : See Deploy Phase 0;

ASEA-CreateConfigRecorder_sfn : See Create Config Recorders;

ASEA-CreateAdConnector_sm : See Create AD Connector;

ASEA-StoreOutputs_sm : See Share Outputs - new in v1.2.1.

Note: Most resources have a random suffix to their name. This is because we use CDK to deploy the resources. See https://docs.aws.amazon.com/

cdk/latest/guide/identifiers.html#identifiers_logical_ids

1.3.1. Get or Create Configuration from S3

This step calls a Lambda function that finds or creates the configuration repository. Finds the configuration file(s) in the CodeCommit repository. If the

configuration file cannot be found in the repository it is copied from the customer's S3 configuration bucket. If the copy is successful then the

configuration file(s) in the S3 bucket will be removed.

The configuration file config.json or config.yaml is parsed and validated. This step will fail if both file types exist, the configuration file is not valid

JSON or YAML or does not adhere to the configuration file specification. Internally the Accelerator always leverages JSON, but accepts JSON or

YAML as the source input file and converts it to JSON prior to each execution, storing the converted and fully expanded file if in the raw folder.

1.

2.

3.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.2.3 1.3. Initial Setup Stack

- 139/230 -

1.3.2. Get Baseline from Configuration

This step calls a Lambda function that gets the alz-baseline of the configuration file to decide which path in the state machine will be taken.

1.3.3. Compare Configurations

This step calls a Lambda function that compares the previous version of the configuration file with the current version of the configuration file. The

previous configuration file CodeCommit commit id is stored in the secret accelerator/config/last-successful-commit in AWS Secrets Manager in

the root account.

The following configuration file changes are not allowed:

changing ALZ baseline;

changing root account or region;

changing central log services account or region;

changing the organizational unit, name or email address of an account;

removing an account;

changing the name, CIDR or region of a VPC;

disabling a VPC;

changing the name, availability zone, CIDR of a subnet;

disabling or removing a subnet;

changing the name, ASN, region or features of a transit gateway;

changing the ID, VPC, subnet, region, size, DNS, Netbios of a Managed Active Directory;

disabling a Managed Active Directory;

changing the ASN of a virtual private gateway;

changing the sharing to accounts of a VPC;

changing the NACLs of a subnet.

It is possible to ignore certain configuration file changes. See Restart the State Machine how to pass these options to the state machine.

1.3.4. Load Landing Zone Configuration

Executed only when using AWS Landing Zone baseline

This step calls a Lambda function that validates the ALZ deployment and configuration.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.2.3 1.3. Initial Setup Stack

- 140/230 -

This step fails when

an existing ALZ deployment in the root account can not be found;

an organizational unit that is used by ALZ or the Accelerator can not be found;

an account is present in the Accelerator configuration but does not exist in AWS Organizations;

an account has a name, email address or organizational unit that is different from the ALZ configuration;

an account has a name, email address or organizational unit that is different from the Accelerator configuration;

the organizational units in the ALZ configuration are different from the ones in AWS Organizations;

the account type of ALZ configuration accounts can not be detected;

the accounts of type primary ', security , log-archive , shared-services are missing from the ALZ configuration.

1.3.5. Add Execution Role to Service Catalog

Executed only when using AWS Landing Zone baseline

This step calls a Lambda function that adds the state machine's IAM role to the ALZ Account Vending Machine (AVM) service catalog portfolio.

1.3.6. Create Landing Zone Account

Executed only when using AWS Landing Zone baseline

This step starts the ASEA-ALZCreateAccount_sm state machine. This state machine is responsible for creating an account using the AVM and waits

for the account to be created and configured.

1.3.7. Organizational Unit (OU) Validation

Executed only when using AWS Organizations baseline

This step validates that the OU structure defined in the Accelerator configuration file matches the OU and account structure defined in AWS

Organizations. Missing OUs are created. If any AWS Accounts or OUs have been renamed, this step updates the configuration file with the latest

information. Accounts located in the incorrect top-level OU cause a state machine failure.

1.3.8. Load Organization Configuration

Executed only when using AWS Organizations baseline

This step calls a Lambda function that validates the Accelerator deployment and configuration.

This step fails when

an organizational unit that is used by the Accelerator can not be found;

an account is present in the Accelerator configuration but does not exist in AWS Organizations;

an account has a name, email address or organizational unit that is different from the Accelerator configuration.

returns accounts that have not been created

duplicates some validation functionality

1.3.9. Install CloudFormation Role in root

Executed only when using AWS Organizations baseline

This step starts the ASEA-InstallCfnRoleMaster_sm state machine. This state machine is responsible for creating the IAM role defined in

organization-admin-role (default: AWSCloudFormationStackSetAdministrationRole) in the root account. You can read more about why this role

is created here.

•

•

•

•

•

•

•

•

•

•

•

•

•

4.2.3 1.3. Initial Setup Stack

- 141/230 -

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-prereqs.html

1.3.10. Create Organization Account

Executed only when using AWS Organizations baseline

This step starts the ASEA-OrgCreateAccount_sm state machine. This state machine is responsible for creating an account using the AWS

Organizations and waits for the account to be created and configured. The newly created account will be moved to the correct organizational unit and

will have an the ASEA-Quarantine-New-Object Service Control Policy (SCP) attached to it. The SCP will only be removed after the Accelerator state

machine has completed.

Application of this SCP ensures that new AWS accounts cannot be used until they have been properly configured and had all Accelerator guardrails

applied per the configuration file. It is important that guardrails be consistently in place from the time a user first accesses a new AWS account, until

the account is decommissioned. Should the state machine fail, still be in-progress, or has not yet processed the account (for whatever reason), users

who access it will be prevented from doing anything.

1.3.11. Load Organizational Units

This step calls a Lambda function that loads all Organizational Units. The Organizational Units are stored in the DynamoDB table ASEA-Parameters

in the root account. The Organizational Units will later be used to determine which configuration file options apply to an AWS account.

1.3.12. Load Accounts

This step calls a Lambda function that loads all accounts. The accounts are stored in the DynamoDB table ASEA-Parameters in the root account. The

accounts will later be used to deploy stacks in the correct accounts.

1.3.13. Install Execution Roles

This step calls a Lambda function that creates stack sets in all Accelerator accounts. This stack sets contains a single resource, i.e. an IAM role

ASEA-PipelineRole that can be assumed by the ASEA-L-SFN-MasterRole . This IAM role allows the root account to administer the Accelerator

accounts.

1.3.14. Delete Default VPCs

This step starts the ASEA-DeleteDefaultVpcs_sfn state machine. This state machine is responsible for deleting default subnets, internet gateways

and VPCs for all regions and accounts in the Accelerator configuration.

This step fails when one or more default VPCs cannot be deleted. This step does not fail on the first error, it executes on all accounts/regions and

then fails with a complete list of errors.

1.3.15. Load Limits

This step calls a Lambda function that loads service quotas and requests a service quota increase according to the configuration file. When a service

quota increase request has been closed but not increased, then the service quota request will be issued again when the creation of the last request

was at least two days ago.

1.3.16. Enable Trusted Access for Services

This step calls a Lambda function that is responsible for

enabling AWS service access in the organization;

enabling AWS Resource Access Manager sharing in the organization;

creating a service-linked role for AWS IAM Access Analyzer;

setting the security account as delegated administrator for AWS Firewall Manager;

setting the security account as delegated administrator for AWS IAM Access Analyzer;

setting the security account as delegated administrator for Amazon GuardDuty.

•

•

•

•

•

•

4.2.3 1.3. Initial Setup Stack

- 142/230 -

1.3.17. Store All Phase Outputs

This step only executes on the first run of the state machine after it has been upgraded to v1.2.0 or above. This step exists solely to support upgrades

from Accelerator versions prior to v1.2.0 and can be removed when no existing customers are running versions older than v1.2.0. This steps

populates the DynamoDB Outputs table with the outputs from previous executions which were previously stored in S3 (and at one time even stored in

secrets manager).

1.3.18. Deploy Phase -1 (Negative one)

The following resources are deployed in phase -1:

Creating required roles for macie custom resources

Creating required roles for guardDuty custom resources

Creating required roles for securityHub custom resources

Creating required roles for IamCreateRole custom resource

Creating required roles for createSSMDocument custom resource

Creating required roles for createLogGroup custom resource

Creating required roles for CWLCentralLoggingSubscriptionFilterRole custom resource

Creating required roles for TransitGatewayCreatePeeringAttachment custom resource

Creating required roles for TransitGatewayAcceptPeeringAttachment custom resource

Creating required roles for createLogsMetricFilter custom resource

Creating required roles for SnsSubscriberLambda custom resource

1.3.19. Store Phase -1 Output

This step calls a Lambda function that stores the outputs from the deployed stacks in sub-accounts in the DynamoDB table ASEA-Outputs in AWS

Secrets Manager in the root account.

1.3.20. Deploy Phase 0

This step starts the ASEA-CodeBuild_sm state machine. This state machine is responsible for starting a CodeBuild execution that deploys

CloudFormation stacks in Accelerator-managed accounts using CDK.

•

•

•

•

•

•

•

•

•

•

•

•

4.2.3 1.3. Initial Setup Stack

- 143/230 -

4.2.3 1.3. Initial Setup Stack

- 144/230 -

The same CodeBuild project is used to deploy all phases. The environment variable ACCELERATOR_PHASE in the CodeBuild execution decides which

phase to deploy.

4.2.3 1.3. Initial Setup Stack

- 145/230 -

The following resources are deployed in phase 0:

create default EBS encryption key;

create an AWS log bucket with encryption key;

create the central log services bucket with encryption key;

create the Accelerator configuration bucket with encryption key;

copy artifacts to the Accelerator configuration bucket:

SCPs;

firewall configuration;

account warming (step 1);

set password policy (step 1);

create IAM users (step 1):

create passwords and store in Secrets Manager;

create MAD deployment (step 1):

create passwords and store in Secrets Manager;

create service-linked role;

create rsyslog deployment (step 1);

create firewalls (step 1);

create budgets (step 1);

create transit gateways (step 1);

create Route53 DNS logging log group;

enable Macie (step 1);

enable GuardDuty;

enable Access Analyzer;

1.3.21. Store Phase 0 Output

This step calls a Lambda function that stores the outputs from the deployed stacks in sub-accounts in the secret ASEA-Outputs in AWS Secrets

Manager in the root account.

1.3.22. Verify Files

This step verifies that all required files to complete the installation have been provided by the user. If any required files have not been provided, this

step will fail and provide a list of all missing files.

Why do we wait until so late in the state machine execution to perform this task?

we do not want to add or delete files from a customer supplied bucket

we do not want to force customers to need to copy and supply standard configuration files for 3. prescriptive installation

we want to allow customers to override the sample or standard configuration files

the config bucket is only created in Phase 0

we copy all the relevant sample files from reference-artifacts folders to our config bucket, and then, we copy any customer supplied config files over top

of our sample files

This allows customers to override the sample configs, with customer custom configs without needing to either fork the repo, or supply the files on a

vanilla install

Until we do this file copy, we cannot be sure that the combination of customer supplied and reference-artifact sample files provides all the required files.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

4.2.3 1.3. Initial Setup Stack

- 146/230 -

1.3.23. Create Config Recorders

This step starts the ASEA-CreateConfigRecorder_sfn state machine. This state machine is responsible for creating Config recorders in all accounts

and regions.

1.3.24. Add SCPs to Organization

This step calls a Lambda function that creates and attaches the SCPs listed in the Accelerator configuration. The SCP policies are loaded from the

Accelerator configuration bucket.

This step fails when

an SCP policy cannot be found in the Accelerator configuration bucket;

an SCP could not be attached to an organizational unit or account, e.g. when the maximum number of attached SCPs is exceeded

1.3.25. Deploy Phase 1

Create S3 Bucket in all accounts and replicate to Log Account Bucket

Deploy VPC:

Vpc

Subnets

Subnet sharing (RAM)

Route tables

Internet gateways

NAT gateways

Interface endpoints

Gateway endpoints

Transit Gateway Attachments

IAM Role required for VPC Peering Auto accept

Firewall images subscription check

Creates the customer gateways for the EIPs of the firewall

Create IAM Roles, Users in account based on configuration

Creates the additional budgets for the account stacks.

Import Certificates

Setup SSMSessionManagerDocument

Create Cost and Usage reports

Enable Macie in root Account

GuardDuty setup in Security Account

Setup CWL Central Logging

Create Roles required for Flow Logs

Transit Gateway Peering

Create LogGroup required for DNS Logging

1.3.26. Store Phase 1 Output

See Deploy Phase 0.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.2.3 1.3. Initial Setup Stack

- 147/230 -

1.3.27. Account Default Settings

This step calls a Lambda function that

enables and sets EBS default encryption for all accounts in the Accelerator configuration;

enables S3 object level ALZ CloudTrail logging;

enables Log Insight events;

enables KMS encryption using the CMK from the central logging account;

sets AWS Systems Manager Session Manager default configuration in every Accelerator-managed account in every region with a VPC.

1.3.28. Deploy Phase 2

Create CloudTrail in root account

Create VPC Peering Connection

Create Security Groups for shared VPC in sub accounts

Setup Security Hub in Security Account

Setup Cross Account CloudWatch logs sharing by creating roles in sub accounts

Enable VPC FlowLogs

Create Active Directory (MAD)

Create Firewall clusters

Create Firewall Management instance

Create Transit Gateway Routes, Association and Propagation

Enable Macie in Security account and Create Members, Update Config

GuardDuty - Add existing Org accounts as members and allow new accounts to be members and Publish

Create SNS Topics in Log Account

TGW Peering Attachments

1.3.29. Store Phase 2 Output

See Deploy Phase 0.

1.3.30. Deploy Phase 3

create peering connection routes;

create ALB (step 1);

create rsyslog deployment (step 2);

create hosted zones, resolver rules and resolver endpoints and Share;

Enable Security Hub and Invite Sub accounts as members;

TransitGateway Peering attachment and routes;

Macie update Session;

1.3.31. Store Phase 3 Output

See Deploy Phase 0.

1.3.32. Deploy Phase 4

SecurityHub Disable Controls

Creates CloudWatch Metrics on LogGroups

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.2.3 1.3. Initial Setup Stack

- 148/230 -

Associate Shared Resolver Rules to VPC

Associate Hosted Zones to VPC

1.3.33. Store Phase 4 Output

See Deploy Phase 0.

1.3.34. Associate Hosted Zones (Step removed in v1.2.1)

This step calls a Lambda function that associates the private zones, all the interface endpoint zones, and the resolver rules with each VPC that

leverages endpoint services. This step was removed in v1.2.1 of the Accelerator codebase.

1.3.35. Add Tags to Shared Resources

This step calls a Lambda function that adds tags to shared resources in the share destination account. For example, when a subnet is shared into

another account, this step will add the Name tag to the subnet in the shared account.

The supported resources are

VPCs;

subnets;

security groups;

transit gateway attachments.

1.3.36. Enable Directory Sharing

This step calls a Lambda function that shares Managed Active Directory according to the Accelerator configuration. The directory is shared from the

source account to the target account. The directory will be accepted in the target account.

1.3.37. Deploy Phase 5

create Remote Desktop Gateway;

create launch configuration;

create autoscaling group;

enable central logging to S3 (step 2);

Create CloudWatch Events for moveAccount, policyChanges and createAccount

Creates CloudWatch Alarms

1.3.38. Create AD Connector

This step starts the ASEA-DeleteDefaultVpcs_sfn state machine. This state machine is responsible for creating AD connectors according to the

Accelerator configuration.

This step fails when one or more AD connectors failed to be created.

1.3.39. Store Commit ID

This step calls a Lambda function that stores the commit ID of the configuration file for which the state machine ran.

1.3.40. Detach Quarantine SCP

Executed only when using AWS Organizations baseline

This step calls a Lambda function that stores the commit ID for which the state machine just ran.

•

•

•

•

•

•

•

•

•

•

•

•

4.2.3 1.3. Initial Setup Stack

- 149/230 -

4.3 1. Troubleshooting

4.3.1 1.1. Overview

Issues could occur in different parts of the Accelerator. We'll guide you through troubleshooting these issues in this section.

4.3.2 1.2. Components

1.2.1. State Machine

Viewing the step function Graph inspector (depicted above in 2.2), the majority of the main state machine has a large colored box around which is

the functionality to catch state machine failures Main Try Catch block to Notify users . This large outer box will be blue while the state machine

is still executing, it will be green upon a successful state machine execution and will turn orange/yellow on a state machine failure.

What if my State Machine fails? Why? Previous solutions had complex recovery processes, what's involved?

If your main state machine fails, review the error(s), resolve the problem and simply re-run the state machine. We've put a huge focus on ensuring the

solution is idempotent and to ensure recovery is a smooth and easy process.

Ensuring the integrity of deployed guardrails is critical in operating and maintaining an environment hosting protected data. Based on customer

feedback and security best practices, we purposely fail the state machine if we cannot successfully deploy guardrails.

Additionally, with millions of active customers each supporting different and diverse use cases and with the rapid rate of evolution of the AWS

platform, sometimes we will encounter unexpected circumstances and the state machine might fail.

We've spent a lot of time over the course of the Accelerator development process ensuring the solution can roll forward, roll backward, be stopped,

restarted, and rerun without issues. A huge focus was placed on dealing with and writing custom code to manage and deal with non-idempotent

resources (like S3 buckets, log groups, KMS keys, etc.). We've spent a lot of time ensuring that any failed artifacts are automatically cleaned up and

don't cause subsequent executions to fail. We've put a strong focus on ensuring you do not need to go into your various AWS sub-accounts and

manually remove or cleanup resources or deployment failures. We've also tried to provide usable error messages that are easy to understand and

troubleshoot. As new scenario's are brought to our attention, we continue to adjust the codebase to better handle these situations.

Will your state machine fail at some point in time, likely. Will you be able to easily recover and move forward without extensive time and effort, YES!

As the state machine executes, each step will turn from white (not started), to blue (executing), to green (Success), or grey/red (failure). To diagnose

the problem select the grey/red step that failed. If you miss the step and select the outer box, you will have selected the Main Try Catch block to

Notify users . You need to carefully select the failed step.

4.3 1. Troubleshooting

- 150/230 -

As stated in section 2.2, the state machine contains 3 different types of states, which are each diagnosed differently.

a. If the step is calling a Lambda function then you will see the following after clicking the failed step.

4.3.2 1.2. Components

- 151/230 -

4.3.2 1.2. Components

- 152/230 -

In this case, you can see that the Cause section contains a useful message. This message will differ between Lambda functions. In case this

message does not make the issue clear, you can click on the CloudWatch Logs link in the Resource section to view the output of the Lambda

function that was called by the step. See the section CloudWatch Logs. Note: The Resource section contains two links that blend together. You need

to click the second link (CloudWatch Logs), not the first link which will open the actual resource/Lambda.

b. In case the failed step started another state machine, you will see the following after clicking the failed step.

To view the state machine execution that failed you can click the link in the Resource section.

In case the failed step started the CodeBuild state machine, ASEA-CodeBuild_sm , you will be able to see the CodeBuild project and execution ID that

failed by looking at the output of the Start Build step in the ASEA-CodeBuild_sm state machine.

4.3.2 1.2. Components

- 153/230 -

.

In the image above the execution of CodeBuild project ASEA-DeployPrebuilt with ID ASEA-DeployPrebuilt:717584a9-

c406-4569-9cc2-0d23e9ff9ef0 failed. See the CodeBuild section to troubleshoot.

4.3.2 1.2. Components

- 154/230 -

1.2.2. CodeBuild

The Accelerator deploys and leverages two CodeBuild projects. The ASEA-InstallerProject_pl project is used by the Code Pipeline/Installer stack

and ASEA-DeployPrebuilt which is used throughout the Accelerator state machine. Both are similar in that they use CDK to deploy stacks. The

installer project will not exist, if the installer has been removed.

After a successful installation you will see the following in Codebuild, for the ASEA-DeployPrebuilt project:

When an error occurs you will see that the CodeBuild project execution fails when looking in the execution overview.

4.3.2 1.2. Components

- 155/230 -

You can click on the name of the CodeBuild execution and then look inside the logs what caused the failure. These logs can be confusing. We are

deploying multiple stacks in parallel and all the messages for all the parallel deployments are interleaved together, so make sure you are correlating

the events back to the correct event source. Because we are deploying to 16 regions in parallel, you will also see messages for the same stack

deployment interleaved. Even though a task may indicate it is complete and then another seemingly identical task indicates in-progress, the second

message is coming from one of the alternate regions.

You can for example see the error message The stack named ASEA-Perimeter-Phase2 is in a failed state: UPDATE_ROLLBACK_COMPLETE . This

means the stack ASEA-Perimeter-Phase2 failed to update and it had to rollback. The error indicated at the bottom of the Codebuild screen is

typically NOT the cause of the failure, just the end result. You need to scroll up and find the FIRST occurrence of an error in the log file. Often starting

at the top of the log file and searching for the text FAIL (case sensitive), will allow you to find the relevant error message(s) quickly. The failure is

typically listed in the CloudFormation update logs.

In this example we can see that the resource FirewallManager failed to create through CloudFormation. One way to solve this issue is to

deprovision the firewall manager in the configuration file and then run the state machine. Next, provision the firewall manager and run the state

machine again.

If the error message is not clear, or the error occurred in a nested stack, then a more detailed error will be available in the CloudFormation stack

events. See the CloudFormation section below.

4.3.2 1.2. Components

- 156/230 -

1.2.3. CloudFormation

In case you want to troubleshoot errors that occurred in CloudFormation, the best way is to look in the CloudFormation stack's events. This requires

you to assume a role into the relevant sub-account, and to locate the relevant failed, rolled-back, or deleted stack. Unfortunately, we are unable to log

the region of the error message, so depending on what's being deployed, you may need to search all 16 regions for the failed stack.

When a native resource fails to create or update there are no additional logs available except what is displayed in the Status reason column. When

a custom resource fails to create or update -- i.e. not a native CloudFormation resource but a resource backed by a custom Lambda function -- then

we can find additional logs in CloudWatch.

4.3.2 1.2. Components

- 157/230 -

Often the stack failure occurrs in a managed account instead of the root account. See Switch To a Managed Account to switch to the CloudFormation

console in the managed account.

1.2.4. Custom Resource

Custom resources are backed by a Lambda function that implements the creation, modification or deletion or the resource. Every Lambda function

has a CloudWatch log group that contains logs about the custom resource creation. To troubleshoot errors in custom resource, you need to check the

custom resource's log group.

Example custom resource log group names:

1.2.5. CloudWatch

When you arrived in CloudWatch logs by clicking on the state machine's step CloudWatch Logs link you will immediately see the list of log streams.

Every log stream represents an instance of the Lambda function.

You can find errors in multiple log groups using CloudWatch Log Insights.

/aws/lambda/ASEA-Master-Phase1-CustomCurReportDefinitionL-14IHLQCC1LY8L
/aws/lambda/ASEA-Master-Phase2-AWS679f53fac002430cb0da5b7-Z75Q4GG9LIV5
/aws/lambda/ASEA-Operations-Phas-AWS679f53fac002430cb0da5-HMV2YF6OKJET
/aws/lambda/ASEA-Operations-Phas-CustomGetDetectorIdLambd-HEM07DR0DOOJ

4.3.2 1.2. Components

- 158/230 -

1.2.6. CodePipeline

"Internal Failure" incorrect Github token, repo or branch

4.3.3 1.3. Examples

Lets walk through a couple of example:

fields @timestamp, @message
| sort @timestamp desc
| filter strcontains(@message, 'ERROR')
| limit 100

•

4.3.3 1.3. Examples

- 159/230 -

1.3.1. Example 1

State Machine failed (Lambda), click on the grey box, then click on the Resource object:

Click on the red failed box, click on Step Input . The error is clearly indicated, we could not delete a Default VPC because the default VPC had

dependencies, in a specified account and region. In this case several dependencies exist and need to be cleaned up to proceed (EIP's and

something less obvious like security groups).

1.3.2. Example 2

In the next example the state machine failed (sub-state machine) on the create accounts step. In this case rather than clicking on the Graph

inspector we are going to scroll down through the Execution event history underneath the Graph inspector. We are going to find the FIRST

failed task from the top of the list and then select the state machine from the prior task:

We will then click onn the red failed box, select Exception and we can see a clear error message - we have exceeded the maximum number of AWS

accounts allowed in your organization:

4.3.3 1.3. Examples

- 160/230 -

Alternatively, in case the Exception error is not clear, we can select Details and then select CloudWatch logs for the end of the Resource

section:

If you open the latest log stream in the opened log group (/aws/lambda/ASEA-InitialSetup-StartAccountCreationHandler-1IZ2N4EP29D72) and

review the last several messages in the stream, the following clear message also appears:

4.3.3 1.3. Examples

- 161/230 -

1.3.3. Example 3

In the next example the state machine failed in one of the CodeBuild state machine steps, based on the Resource name of the failed step.

Rather than tracing this failure through the sub-state machine and then into the failed CodeBuild task, we are simply going to open AWS CodeBuild,

and open the ASEA-DeployPrebuilt task. The failed task should be on the top of the Codebuild build run list. Open the build job.

Using your browser, from the top of the page, search for "FAIL", and we are immediately brought to the error. In this particular case we had an issue

with the creation of VPC endpoints. We defined something not supported by the current configuration file. The solution was to simply remove the

offending endpoints from the config file and re-run the state machine.

4.3.3 1.3. Examples

- 162/230 -

4.4 1. Common Tasks

4.4.1 1.1. Restart the State Machine

The state machine can be stopped and restarted at any time. The Accelerator has been design to be able to rollback to a stable state, such that

should the state machine be stopped or fail for any reason, subsequent state machine executions can simply proceed through the failed step without

manual cleanup or issues (assuming the failure scenario has been resolved). An extensive amount of effort was placed on ensuring seamless

customer recovery in failure situations. The Accelerator is idempotent - it can be run as many or as few times as desired with no negative effect. On

each state machine execution, the state machine, primarily leveraging the capabilities of CDK, will evaluate the delta's between the old previously

deployed configuration and the new configuration and update the environment as appropriate.

The state machine will execute:

automatically after each execution of the Code Pipeline (new installs, code upgrades, or manual pipeline executions)

automatically when new AWS accounts are moved into any Accelerator controller OU in AWS Organizations

when someone manual starts it: Step Functions , ASEA-MainStateMachine_sm , Start Execution , Start Execution (leave default values in

name and json box)

The state machine prevents users from accidentally performing certain major breaking changes, specifically unsupported AWS platform changes,

changes that will fail to deploy, or changes that could be catastrophic to users. If someone knows exactly what they are doing and the full implications

of these changes, we provide the option to override these checks. Customers should expect that items we have blocked CANNOT be changed after

the Accelerator installation.

These flags should be used with extreme caution. Specifying any of these flags without proper guidance will likely leave your Accelerator

in a state of disrepair. These flags were added for internal purposes only - we do NOT support customers providing these flags.

Providing this parameter to the state machine overrides all checks:

Providing any one or more of the following flags will only override the specified check(s):

Providing this value allows for the forced rebuilding of the DynamoDB Outputs table:

4.4.2 1.2. Switch To a Managed Account

To switch from the root account to a managed account you can click on your account name in the AWS Console. Then choose Switch Role in the

menu.

•

•

•

{

 "overrideComparison": true

}

{

 "configOverrides": {

 "ov-global-options": true,

 "ov-del-accts": true,

 "ov-ren-accts": true,

 "ov-acct-email": true,

 "ov-acct-ou": true,

 "ov-acct-vpc": true,

 "ov-acct-subnet": true,

 "ov-tgw": true,

 "ov-mad": true,

 "ov-ou-vpc": true,

 "ov-ou-subnet": true,

 "ov-share-to-ou": true,

 "ov-share-to-accounts": true,

 "ov-nacl": true,

 "ov-nfw": true

 }

}

{

 "storeAllOutputs": true

}

4.4 1. Common Tasks

- 163/230 -

In the page that appears next you need to fill out the account ID of the managed account you want to switch to. Next, you need to enter the role name

defined in organization-admin-role (default: AWSCloudFormationStackSetAdministrationRole). And lastly, you need to enter a relevant name so

you can later switch roles by using this name.

TBD: This role may be locked down starting in v1.2.5 - Update process once direction finalized

Caution: This mechanism is ONLY to be used for troubleshooting Accelerator problems. This role is outside the Accelerator governance process and

bypasses all the preventative guardrails that protect the Accelerator contructs and prevent users from performing activities in violation of the security

guardrails. This role should NOT be used outside this context, all users should be authenticating and logging into the environment through AWS SSO.

After switching to the managed account, the AWS Console header will look like the following image.

4.4.2 1.2. Switch To a Managed Account

- 164/230 -

You can switch to the same account again quickly by clicking the name you entered previously in the menu.

4.4.2 1.2. Switch To a Managed Account

- 165/230 -

5. Developer Guide

5.1 Accelerator Developer Guide

It is important to read the Operations Guide before reading this document.

Development Guide

Tech Stack

Best Practices

How to Contribute

Release Process

•

•

•

•

•

5. Developer Guide

- 166/230 -

5.2 1. Development Guide

This document is a reference document. Instead of reading through it in linear order, you can use it to look up specific issues as needed.

It is important to read the Operations Guide before reading this document. If you're interested in actively contributing to the project, you should also

review the Governance and Contributing Guide.

5.2.1 1.1. Overview

There are different types of projects in this monorepo.

Projects containing CDK code that compiles to CloudFormation templates and deploy to AWS using the CDK toolkit;

Projects containing runtime code that is used by the CDK code to deploy Lambda functions;

Projects containing reusable code; both for use by the CDK code and/or runtime code.

The CDK code either deploys Accelerator-management resources or Accelerator-managed resources. See the Operations Guide for the distinction

between Accelerator-management and Accelerator-managed resources.

The only language used in the project is TypeScript and exceptionally JavaScript. We do not write CloudFormation templates, only CDK code.

When we want to enable functionality in a managed account we try to

use native CloudFormation/CDK resource to enable the functionality;

create a custom resource to enable the functionality; or

lastly create a new step in the Initial Setup state machine to enable the functionality.

5.2.2 1.2. Project Structure

The folder structure of the project is as follows:

src/installer/cdk : See Installer Stack;

src/core/cdk : See Initial Setup Stack;

src/core/runtime See Initial Setup Stack and Phase Steps and Phase Stacks;

src/deployments/runtime See Phase Steps and Phase Stacks;

src/deployments/cdk : See Phase Steps and Phase Stacks;

src/lib/accelerator-cdk : See Libraries & Tools;

src/lib/cdk-constructs : See Libraries & Tools;

src/lib/cdk-plugin-assume-role : See CDK Assume Role Plugin.

src/lib/common-config : See Libraries & Tools;

src/lib/common-outputs : See Libraries & Tools;

src/lib/common-types : See Libraries & Tools;

src/lib/common : See Libraries & Tools;

src/lib/custom-resources/**/cdk : See Custom Resources;

src/lib/custom-resources/**/runtime : See Custom Resources;

5.2.3 1.3. Installer Stack

Read the Operations Guide first before reading this section. This section is a technical addition to the section in the Operations Guide.

1.

2.

3.

1.

2.

3.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2 1. Development Guide

- 167/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/blob/main/CONTRIBUTING.md

As stated in the Operations Guide, the Installer stack is responsible for installing the Initial Setup stack. It is an Accelerator-management

resource. The main resource in the Installer stack is the ASEA-Installer CodePipeline. The CodePipeline uses this GitHub repository as source

action and runs CDK in a CodeBuild step to deploy the Initial Setup stack.

When the CodePipeline finishes deploying the Initial Setup stack, it starts a Lambda function that starts the execution of the Initial Setup

stack's main state machine.

The Initial Setup stack deployment receives environment variables from the CodePipeline's CodeBuild step. The most notable environment

variables are:

ACCELERATOR_STATE_MACHINE_NAME : The Initial Setup will use this name for the main state machine. So it is the Installer stack that decides

the name of the main state machine. This way we can confidently start the main state machine of the Initial Setup stack from the

CodePipeline;

ENABLE_PREBUILT_PROJECT : See Prebuilt Docker Image.

5.2.4 1.4. Initial Setup Stack

Read Operations Guide first before reading this section. This section is a technical addition to the section in the Operations Guide.

As stated in the Operations Guide, the Initial Setup stack consists of a state machine, named ASEA-MainStateMachine_sm , which executes steps

to create the Accelerator-managed stacks and resources in the managed accounts. It is an Accelerator-management resource.

The Initial Setup stack is defined in the src/core/cdk folder.

The Initial Setup stack is similar to the Installer stack, as in that it runs a CodeBuild project to deploy others stacks using CDK. In case of the

Initial Setup stack

we use a AWS Step Functions State Machine to run steps instead of using a CodePipeline;

we deploy multiple stacks, called Phase stacks, in Accelerator-managed accounts. These Phase stacks contain Accelerator-managed resources.

In order to install these Phase stacks in Accelerator-managed accounts, we need access to those accounts. We create a stack set in the

Organization Management (root) account that has instances in all Accelerator-managed accounts. This stack set contains what we call the

PipelineRole .

The code for the steps in the state machine is in src/core/runtime . All the steps are in different files but are compiled into a single file. We used to

compile all the steps separately but we would hit a limit in the amount of parameters in the generated CloudFormation template. Each step would

have its own CDK asset that would introduce three new parameters. We quickly reached the limit of 60 parameters in a CloudFormation template and

decided to compile the steps into a single file and use it across all different Lambda functions.

new codebuild.PipelineProject(stack, 'InstallerProject', {

 buildSpec: codebuild.BuildSpec.fromObject({

 version: '0.2',

 phases: {

 install: {

 'runtime-versions': {

 nodejs: 14,

 },

 // The flag '--unsafe-perm' is necessary to run pnpm scripts in Docker

 commands: ['npm install --global pnpm@6.2.3', 'pnpm install --unsafe-perm --frozen-lockfile'],

 },

 pre_build: {

 // The flag '--unsafe-perm' is necessary to run pnpm scripts in Docker

 commands: ['pnpm recursive run build --unsafe-perm'],

 },

 build: {

 commands: [

 'cd src/core/cdk',

 // Bootstrap the environment for use by CDK

 'pnpx cdk bootstrap --require-approval never',

 // Deploy the Initial Setup stack

 'pnpx cdk deploy --require-approval never',

],

 },

 },

 }),

});

•

•

•

•

5.2.4 1.4. Initial Setup Stack

- 168/230 -

1.4.1. CodeBuild and Prebuilt Docker Image

The CodeBuild project that deploys the different Phase stacks is constructed using the CdkDeployProject or PrebuiltCdkDeployProject based on

the value of the environment variable ENABLE_PREBUILT_PROJECT .

The first, CdkDeployProject constructs a CodeBuild project that copies this whole Github repository as a ZIP file to S3 using CDK S3 assets. This

ZIP file is then used as source for the CodeBuild project. When the CodeBuild project executes, it runs pnpm recursive install which in turn will

run all prepare scripts in all package.json files in the project -- as described in section CDK Code Dependency on Lambda Function Code.

After installing the dependencies, the CodeBuild project deploys the Phase stacks.

We have more than 50 workspace projects in the monorepo with a prepare script, so the pnpm recursive install step can take some time. Also,

the CodeBuild project will run for each deployed Phase stack in each Accelerator-managed account.

This is where the PrebuiltCdkDeployProject CodeBuild project comes in. The PrebuiltCdkDeployProject contains a Docker image that contains

the whole project in the /app directory and has all the dependencies already installed.

When this CodeBuild project executes, it uses the Docker image as base -- the dependencies are already installed -- and runs the same commands

as the CdkDeployProject to deploy the Phase stacks.

1.4.2. Passing Data to Phase Steps and Phase Stacks

Some steps in the state machine write data to Amazon DynamoDB. This data is necessary to deploy the Phase stacks later on. At one time this data

was written to Secrets Manager and/or S3, these mechanisms were deemed ineffective due to object size limitations or consistency challenges and

were all eventually migrated to DynamoDB.

Load Accounts step: This step finds the Accelerator-managed accounts in AWS Organizations and stores the account key -- the key of the

account in mandatory-account-configs or workload-account-configs object in the Accelerator config -- and account ID and other useful

information in the ASEA-Parameters table, accounts/# key and accounts-items-count key;

Load Organizations step: More or less the same as the Load Accounts step but for organizational units in AWS Organizations and stores the

values in the ASEA-Parameters table, organizations key;

Load Limits step: This step requests limit increases for Accelerator-managed accounts and stores the current limits in the the ASEA-Parameters

table, limits key.

Store Phase X Output : This step loads stack outputs from all existing Phase stacks and stores the outputs in the DynamoDB table ASEA-

Outputs .

Other data is passed through environment variables:

ACCELERATOR_NAME : The name of the Accelerator;

ACCELERATOR_PREFIX : The prefix for all named Accelerator-managed resources;

ACCELERATOR_EXECUTION_ROLE_NAME : The name of the execution role in the Accelerator-managed accounts. This is the PipelineRole we created

using stack sets.

5.2.5 1.5. Phase Steps and Phase Stacks

Read Operations Guide first before reading this section. This section is a technical addition to the Deploy Phase X sections in the Operations Guide.

cd src/deployments/cdk

sh codebuild-deploy.sh

FROM node:12-alpine3.11

Install the package manager

RUN npm install --global pnpm

RUN mkdir /app

WORKDIR /app

Copy over the project root to the /app directory

ADD . /app/

Install the dependencies

RUN pnpm install --unsafe-perm --frozen-lockfile

Build all Lambda function runtime code

RUN pnpm recursive run build --unsafe-perm

•

•

•

•

•

•

•

5.2.5 1.5. Phase Steps and Phase Stacks

- 169/230 -

https://docs.aws.amazon.com/cdk/api/latest/docs/aws-s3-assets-readme.html

The Phase stacks contain the Accelerator-managed resources. The reason the deployment of Accelerator-managed resources is split into different

phases is because there cannot be cross account/region references between CloudFormation stacks. See Cross-Account/Region References.

The Phase stacks are deployed by a CodeBuild project in the Initial Setup stack as stated in the previous paragraphs. The CodeBuild project

executes the codebuild-deploy.sh script. See initial-setup.ts .

The codebuild-deploy.sh script executes the cdk.ts file.

The cdk.ts file is meant as a replacement for the cdk CLI command. To deploy a phase stack you would not run pnpx cdk deploy but

cdk.sh --phase 1 . See CDK API for more information why we use the CDK API instead of using the CDK CLI.

The cdk.ts command parses command line arguments and creates all the cdk.App for all accounts and regions for the given --phase . When you

pass the --region or --account-key command, all the cdk.App for all accounts and regions will still be created, except that only the cdk.App s

matching the parameters will be deployed. This behavior could be optimized in the future. See Stacks with Same Name in Different Regions for more

information why we're creating multiple cdk.App s.

5.2.6 1.6. Store outputs to SSM Parameter Store

Customers need the CloudFormation outputs of resources that are created by the accelerator in order to deploy their own resources in AWS. eg.

vpcId in shared-network account to create an ec2 instance, etc.

This step loads the stack outputs from our DynamoDB Table ASEA-Outputs and stores as key value pairs in SSM Parameter Store in each account.

Example values are

/ASEA/network/vpc/1/name => Endpoint

/ASEA/network/vpc/1/id => vpc-XXXXXXXXXX

ASEA-Outputs-Utils DynamoDB Table is used extensively to maintain same index irrespective of configuration changes.

This allows customers to reliably build Infrastructure as Code (IaC) which depends on accelerator deployed objects like VPC's, security groups,

subnets, ELB's, KMS keys, IAM users and policies. Rather than making the parameters dependent on object names, we used an indexing scheme,

which we maintain and don't update as a customers configuration changes. We have attempted to keep the index values consistent across accounts

(based on the config file), such that when code is propoted through the SDLC cycle from Dev to Test to Prod, the input parameters to the IaC scripts

do not need to be updated, the App subnet, for example, will have the same index value in all accounts.

1.6.1. Phases and Deployments

The cdk.ts file calls the deploy method in the apps/app.ts . This deploy method loads the Accelerator configuration, accounts, organizations

from DynamoDB; loads the stack outputs from Amazon DynamoDB; and loads required environment variables.

It is important to note that no configuration is hard-coded. The CloudFormation templates are generated by CDK and the CDK constructs are created

according to the configuration file. Changes to the configuration will change the CDK construct tree and that will result in a different CloudFormation

template that is deployed.

The different phases are defined in apps/phase-x.ts . Historically we created all CDK constructs in the phase-x.ts files. After a while the phase-

x.ts files started to get too big and we moved to separating the logic into separate deployments. Every logical component has a separate folder in

the deployments folder. Every deployment consists of so-called steps. Separate steps are put in loaded in phases.

•

•

/**

 * Input to the `deploy` method of a phase.

 */

export interface PhaseInput {

 // The config.json file

 acceleratorConfig: AcceleratorConfig;

 // Auxiliary class to construct stacks

 accountStacks: AccountStacks;

 // The list of accounts, their key in the configuration file and their ID

 accounts: Account[];

 // The parsed environment variables

 context: Context;

 // The list of stack outputs from previous phases

 outputs: StackOutput[];

 // Auxiliary class to manage limits

 limiter: Limiter;

}

5.2.6 1.6. Store outputs to SSM Parameter Store

- 170/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/blob/main/src/core/cdk/src/initial-setup.ts#L132
https://github.com/aws-samples/aws-secure-environment-accelerator/blob/main/src/core/cdk/src/initial-setup.ts#L132
https://github.com/aws-samples/aws-secure-environment-accelerator/blob/main/src/deployments/cdk/codebuild-deploy.sh
https://github.com/aws-samples/aws-secure-environment-accelerator/blob/main/src/deployments/cdk/codebuild-deploy.sh
https://github.com/aws-samples/aws-secure-environment-accelerator/blob/main/src/deployments/cdk/cdk.ts
https://github.com/aws-samples/aws-secure-environment-accelerator/blob/main/src/deployments/cdk/cdk.ts

For example, take the deployments/defaults deployment. The deployment consists of two steps, i.e. step-1.ts and step-2.ts . deployments/

defaults/step-1.ts is created in apps/phase-0.ts and deployments/defaults/step-2.ts is created in apps/phase-1.ts . You can find more

details about what happens in each phase in the Operations Guide.

apps/phase-0.ts

apps/phase-1.ts

1.6.2. Passing Outputs between Phases

The CodeBuild step that is responsible for deploying a Phase stack runs in the Organization Management (root) account. We wrote a CDK plugin

that allows the CDK deploy step to assume a role in the Accelerator-managed account and create the CloudFormation Phase stack in the managed

account. See CDK Assume Role Plugin.

After a Phase-X is deployed in all Accelerator-managed accounts, a step in the Initial Setup state machine collects all the Phase-X stack outputs

in all Accelerator-managed accounts and regions and stores theses outputs in DynamoDB.

Then the next Phase-X+1 deploys using the outputs from the previous Phase-X stacks.

See Creating Stack Outputs for helper constructs to create outputs.

1.6.3. Decoupling Configuration from Constructs

At the start of the project we created constructs that had tight coupling to the Accelerator config structure. The properties to instantiate a construct

would sometimes have a reference to an Accelerator-specific interface. An example of this is the Vpc construct in src/deployments/cdk/common/

vpc.ts .

Later on in the project we started decoupling the Accelerator config from the construct properties. Good examples are in src/lib/cdk-constructs/ .

Decoupling the configuration from the constructs improves reusability and robustness of the codebase.

5.2.7 1.7. Libraries and Tools

1.7.1. CDK Assume Role Plugin

At the time of writing, CDK does not support cross-account deployments of stacks. It is possible however to write a CDK plugin and implement your

own credential loader for cross-account deployment.

export async function deploy({ acceleratorConfig, accountStacks, accounts, context }: PhaseInput) {

 // Create defaults, e.g. S3 buckets, EBS encryption keys

 const defaultsResult = await defaults.step1({

 acceleratorPrefix: context.acceleratorPrefix,

 accountStacks,

 accounts,

 config: acceleratorConfig,

 });

export async function deploy({ acceleratorConfig, accountStacks, accounts, outputs }: PhaseInput) {

 // Find the central bucket in the outputs

 const centralBucket = CentralBucketOutput.getBucket({

 accountStacks,

 config: acceleratorConfig,

 outputs,

 });

 // Find the log bucket in the outputs

 const logBucket = LogBucketOutput.getBucket({

 accountStacks,

 config: acceleratorConfig,

 outputs,

 });

 // Find the account buckets in the outputs

 const accountBuckets = await defaults.step2({

 accounts,

 accountStacks,

 centralLogBucket: logBucket,

 config: acceleratorConfig,

 });

}

5.2.7 1.7. Libraries and Tools

- 171/230 -

We wrote a CDK plugin that can assume a role into another account. In our case, the Organization Management (root) account will assume the

PipelineRole in an Accelerator-managed account to deploy stacks.

1.7.2. CDK API

We use the internal CDK API to deploy the Phase stacks instead of the CDK CLI for the following reasons:

It allows us to deploy multiple stacks in parallel;

Disable stack termination before destroying a stack;

Delete a stack after it initially failed to create;

Deploy multiple apps at the same time -- see Stacks with Same Name in Different Regions.

The helper class CdkToolkit in toolkit.ts wraps around the CDK API.

The risk of using the CDK API directly is that the CDK API can change at any time. There is no stable API yet. When upgrading the CDK version, the

CdkToolkit wrapper might need to be adapted.

1.7.3. AWS SDK Wrappers

You can find aws-sdk wrappers in the src/lib/common/src/aws folder. Most of the classes and functions just wrap around aws-sdk classes and

implement promises and exponential backoff to retryable errors. Other classes, like Organizations have additional functionality such as listing all

the organizational units in an organization in the function listOrganizationalUnits .

Please use the aws-sdk wrappers throughout the project or write an additional wrapper when necessary.

1.7.4. Configuration File Parsing

The configuration file is defined and validated using the io-ts library. See src/lib/common-config/src/index.ts . In case any changes need to be

made to the configuration file parsing, this is the place to be.

We wrap a class around the AcceleratorConfig type that contains additional helper functions. You can add your own additional helper functions.

1.7.4.1. ACCELERATORNAMETAGGER

AcceleratorNameTagger is a CDK aspect that sets the name tag on specific resources based on the construct ID of the resource.

The following example illustrates its purpose.

The example above synthesizes to the following CloudFormation template.

1.7.4.2. ACCELERATORSTACK

AcceleratorStack is a class that extends cdk.Stack and adds the Accelerator tag to all resources in the stack. It also applies the aspect

AcceleratorNameTagger .

It is also used by the accelerator-name-generator.ts functions to find the name of the Accelerator .

1.7.4.3. NAME GENERATOR

The accelerator-name-generator.ts file contains methods that create names for resources that are optionally prefixed with the Accelerator name,

and optionally suffixed with a hash based on the path of the resource, the account ID and region of the stack.

The functions should be used to create pseudo-random names for IAM roles, KMS keys, key pairs and log groups.

•

•

•

•

const stack = new cdk.Stack();

new ec2.CfnVpc(stack, 'SharedNetwork', {});

Aspects.of(stack).add(new AcceleratorNameTagger());

Resources:

 SharedNetworkAB7JKF7:

 Properties:

 Tags:

 - Key: Name

 Value: SharedNetwork_vpc

5.2.7 1.7. Libraries and Tools

- 172/230 -

https://github.com/gcanti/io-ts
https://github.com/gcanti/io-ts
https://docs.aws.amazon.com/cdk/latest/guide/aspects.html

1.7.4.4. ACCOUNTSTACKS

AccountStacks is a class that manages the creation of an AcceleratorStack based on a given account key and region. If an account with the given

account key cannot be found in the accounts object -- which is loaded by apps/app.ts then no stack will be created. This class is used extensively

throughout the phases and deployment steps.

1.7.4.5. VPC AND IMPORTEDVPC

Vpc is an interface in the src/lib/cdk-constructs/src/vpc/vpc.ts file that attempts to define an interface for a VPC. The goal of the interface is

to be implemented by a Construct that implements the interface. This CDK issue provides more background [https://github.com/aws/aws-cdk/

issues/5927].

Another goal of the interface is to provide an interface on top of imported VPC outputs. This is what the ImportedVpc class implements. The class

loads outputs from VPC in a previous phase and implements the Vpc interface on top of those outputs.

1.7.4.6. LIMITER

So far we haven't talked about limits yet. There is a step in the Initial Setup state machine that requests limit increases according to the desired

limits in the configuration file. The step saves the current limits to the limits key in the DynamoDB table ASEA-Parameters . The apps/app.ts file

loads the limits and passes them as an input to the phase deployment.

The Limiter class helps keeps track of resource we create and prevents exceeding these limits.

Action Item: This functionality could be redesigned to scan all the constructs in a cdk.App and remove resource that are exceeding any limits.

1.7.5. Creating Stack Outputs

Initially we would create stack outputs like this:

export async function step1(props: CertificatesStep1Props) {

 const { accountStacks, centralBucket: centralBucket, config } = props;

 for (const { accountKey, certificates } of config.getCertificateConfigs()) {

 if (certificates.length === 0) {

 continue;

 }

 const accountStack = accountStacks.tryGetOrCreateAccountStack(accountKey);

 if (!accountStack) {

 console.warn(`Cannot find account stack ${accountKey}`);

 continue;

 }

 for (const certificate of certificates) {

 createCertificate({

 centralBucket,

 certificate,

 scope: accountStack,

 });

 }

 }

}

for (const { ouKey, accountKey, vpcConfig, deployments } of acceleratorConfig.getVpcConfigs()) {

 if (!limiter.create(accountKey, Limit.VpcPerRegion, region)) {

 console.log(`Skipping VPC "${vpcConfig.name}" deployment.`);

 console.log(`Reached maximum VPCs per region for account "${accountKey}" and region "${region}"`);

 continue;

 }

 createVpc({ ouKey, accountKey, vpcConfig });

}

new cdk.CfnOutput(stack, 'BucketOutput', {

 value: bucket.bucketArn,

});

5.2.7 1.7. Libraries and Tools

- 173/230 -

But then we'd get a lot of outputs in a stack. We started some outputs together using JSON. This allowed us to store structured data inside the stack

outputs.

Using the solution above, we'd not have type checking when reading or writing outputs. That's what the class StructuredOutputValue has a solution

for. It uses the io-ts library to serialize and deserialize structured types.

And we can even improve on this a bit more.

Generally you would place the output type definition inside src/lib/common-outputs along with the output finder. Then in the deployment folder in

src/deployments/cdk/deployments you would create an output.ts file where you would define the CDK output type with

createCfnStructuredOutput . You would not define the CDK output type in src/lib/common-outputs since that project is also used by runtime

code that does not need to know about CDK and CloudFormation.

1.7.5.1. ADDING TAGS TO SHARED RESOURCES IN DESTINATION ACCOUNT

There is another special type of output, AddTagsToResourcesOutput . It can be used to attach tags to resources that are shared into another account.

This will add the outputs to the stack in the account that is initiating the resource share.

new JsonOutputValue(stack, 'Output', {

 type: 'FirewallInstanceOutput',

 value: {

 instanceId: instance.instanceId,

 name: firewallConfig.name,

 az,

 },

});

export const FirewallInstanceOutput = t.interface(

 {

 id: t.string,

 name: t.string,

 az: t.string,

 },

 'FirewallInstanceOutput',

);

export type FirewallInstanceOutput = t.TypeOf<typeof FirewallInstanceOutput>;

new StructuredOutputValue<FirewallInstanceOutput>(stack, 'Output', {

 type: FirewallInstanceOutput,

 value: {

 instanceId: instance.instanceId,

 name: firewallConfig.name,

 az,

 },

});

export const CfnFirewallInstanceOutput = createCfnStructuredOutput(FirewallInstanceOutput);

new CfnFirewallInstanceOutput(stack, 'Output', {

 vpcId: vpc.ref,

 vpcName: vpcConfig.name,

});

export const FirewallInstanceOutputFinder = createStructuredOutputFinder(FirewallInstanceOutput, () => ({}));

// Create an OutputFinder

const firewallInstances = FirewallInstanceOutputFinder.findAll({

 outputs,

 accountKey,

});

// Example usage of the OutputFinder

const firewallInstance = firewallInstances.find(i => i.name === target.name && i.az === target.az);

new AddTagsToResourcesOutput(this, 'OutputSharedResourcesSubnets', {

 dependencies: sharedSubnets.map(o => o.subnet),

 produceResources: () =>

 sharedSubnets.map(o => ({

 resourceId: o.subnet.ref,

 resourceType: 'subnet',

 sourceAccountId: o.sourceAccountId,

 targetAccountIds: o.targetAccountIds,

 tags: o.subnet.tags.renderTags(),

 })),

});

5.2.7 1.7. Libraries and Tools

- 174/230 -

Next, the state machine step Add Tags to Shared Resources looks for all those outputs. The step will assume the PipelineRole in the

targetAccountIds and attach the given tags to the shared resource.

1.7.6. Custom Resources

There are different ways to create a custom resource using CDK. See the Custom Resource section for more information.

All custom resources have a README.md that demonstrates their usage.

1.7.6.1. EXTERNALIZING AWS-SDK

Some custom resources set the aws-sdk as external dependency and some do not.

Example of setting aws-sdk as external dependency.

src/lib/custom-resources/cdk-kms-grant/runtime/package.json

Example of setting aws-sdk as embedded dependency.

src/lib/custom-resources/cdk-guardduty-enable-admin/runtime/package.json

Setting the aws-sdk library as external is sometimes necessary when a newer aws-sdk version is necessary for the Lambda runtime code. At the

time of writing the NodeJS 12 runtime uses aws-sdk version 2.631.0

For example the method AWS.GuardDuty.enableOrganizationAdminAccount was only introduced in aws-sdk version 2.660 . That means that

Webpack has to embed the aws-sdk version specified in package.json into the compiled JavaScript file. This can be achieved by removing aws-

sdk from the external array.

src/lib/custom-resources/cdk-kms-grant/runtime/package.json

1.7.6.2. CFN-RESPONSE

This library helps you send a custom resource response to CloudFormation.

src/lib/custom-resources/cdk-kms-grant/runtime/src/index.ts

1.7.6.3. CFN-TAGS

This library helps you send attaching tags to resource created in a custom resource.

{

 "externals": ["aws-lambda", "aws-sdk"],

 "dependencies": {

 "aws-lambda": "1.0.6",

 "aws-sdk": "2.631.0"

 }

}

{

 "externals": ["aws-lambda"],

 "dependencies": {

 "aws-lambda": "1.0.6",

 "aws-sdk": "2.711.0"

 }

}

export const handler = errorHandler(onEvent);

async function onEvent(event: CloudFormationCustomResourceEvent) {

 console.log(`Creating KMS grant...`);

 console.log(JSON.stringify(event, null, 2));

 // eslint-disable-next-line default-case

 switch (event.RequestType) {

 case 'Create':

 return onCreate(event);

 case 'Update':

 return onUpdate(event);

 case 'Delete':

 return onDelete(event);

 }

}

5.2.7 1.7. Libraries and Tools

- 175/230 -

1.7.6.4. WEBPACK-BASE

This library defines the base Webpack template to compile custom resource runtime code.

src/lib/custom-resources/cdk-kms-grant/runtime/package.json

src/lib/custom-resources/cdk-ec2-image-finder/runtime/webpack.config.ts

5.2.8 1.8. Workarounds

1.8.1. Stacks with Same Name in Different Regions

The reason we're creating a cdk.App per account and per region and per phase is because stack names across environments might overlap, and at

the time of writing, the CDK CLI does not handle stacks with the same name well. For example, when there is a stack Phase1 in us-east-1 and

another stack Phase1 in ca-central-1 , the stacks will both be synthesized by CDK to the cdk.out/Phase1.template.json file and one stack will

overwrite another's output. Using multiple cdk.App s overcomes this issues as a different outdir can be set on each cdk.App . These cdk.App s

are managed by the AccountStacks abstraction.

5.2.9 1.9. Local Development

1.9.1. Local Installer Stack

Use CDK to synthesize the CloudFormation template.

The installer template file is now in cdk.out/AcceleratorInstaller.template.json . This file can be used to install the installer stack.

You can also deploy the installer stack directly from the command line but then you'd have to pass some stack parameters. See CDK documentation:

Deploying with parameters.

1.9.2. Local Initial Setup Stack

There is a script called cdk.sh in src/core/cdk that allows you to deploy the Initial Setup stack.

{

 "name": "@aws-accelerator/custom-resource-kms-grant-runtime",

 "version": "0.0.1",

 "private": true,

 "scripts": {

 "prepare": "webpack-cli --config webpack.config.ts"

 },

 "source": "src/index.ts",

 "main": "dist/index.js",

 "types": "dist/index.d.ts",

 "externals": ["aws-lambda", "aws-sdk"],

 "devDependencies": {

 "@aws-accelerator/custom-resource-runtime-webpack-base": "workspace:^0.0.1",

 "@types/aws-lambda": "8.10.46",

 "@types/node": "14.14.31",

 "ts-loader": "7.0.5",

 "typescript": "3.8.3",

 "webpack": "4.42.1",

 "webpack-cli": "3.3.11"

 },

 "dependencies": {

 "@aws-accelerator/custom-resource-runtime-cfn-response": "workspace:^0.0.1",

 "aws-lambda": "1.0.6",

 "aws-sdk": "2.668.0"

 }

}

import { webpackConfigurationForPackage } from '@aws-accelerator/custom-resource-runtime-webpack-base';

import pkg from './package.json';

export default webpackConfigurationForPackage(pkg);

cd src/installer/cdk

pnpx cdk synth

cd accelerator/installer

pnpx cdk deploy --parameters GithubBranch=main --parameters ConfigS3Bucket=ASEA-myconfigbucket

5.2.8 1.8. Workarounds

- 176/230 -

https://docs.aws.amazon.com/cdk/latest/guide/parameters.html#parameters_deploy
https://docs.aws.amazon.com/cdk/latest/guide/parameters.html#parameters_deploy

The script sets the required environment variables and makes sure all workspace projects are built before deploying the CDK stack.

1.9.3. Phase Stacks

There is a script called cdk.sh in src/deployments/cdk that allows you to deploy a phase stack straight from the command-line without having to

deploy the Initial Setup stack first.

5.2.9 1.9. Local Development

- 177/230 -

The script enables development mode which means that accounts, organizations, configuration, limits and outputs will be loaded from the local

environment instead of loading the values from DynamoDB. The local files that need to be available in the src/deployments/cdk folder are the

following.

accounts.json based on accelerator/accounts (-Parameters table)

organizations.json based on accelerator/organizations (-Parameters table)

limits.json based on accelerator/limits (-Parameters table)

outputs.json based on the -Outputs table

context.json that contains the default values for values that are otherwise passed as environment variables.

1.

[

 {

 "key": "shared-network",

 "id": "000000000001",

 "arn": "arn:aws:organizations::000000000000:account/o-0123456789/000000000001",

 "name": "myacct-ASEA-shared-network",

 "email": "myacct+ASEA-mandatory-shared-network@example.com",

 "ou": "core"

 },

 {

 "key": "operations",

 "id": "000000000002",

 "arn": "arn:aws:organizations::000000000000:account/o-0123456789/000000000002",

 "name": "myacct-ASEA-operations",

 "email": "myacct+ASEA-mandatory-operations@example.com",

 "ou": "core"

 }

]

1.

[

 {

 "ouId": "ou-0000-00000000",

 "ouArn": "arn:aws:organizations::000000000000:ou/o-0123456789/ou-0000-00000000",

 "ouName": "core",

 "ouPath": "core"

 },

 {

 "ouId": "ou-0000-00000001",

 "ouArn": "arn:aws:organizations::000000000000:ou/o-0123456789/ou-0000-00000001",

 "ouName": "prod",

 "ouPath": "prod"

 }

]

1.

[

 {

 "accountKey": "shared-network",

 "limitKey": "Amazon VPC/VPCs per Region",

 "serviceCode": "vpc",

 "quotaCode": "L-F678F1CE",

 "value": 15,

 "region": "ca-central-1"

 },

 {

 "accountKey": "shared-network",

 "limitKey": "Amazon VPC/Interface VPC endpoints per VPC",

 "serviceCode": "vpc",

 "quotaCode": "L-29B6F2EB",

 "value": 50,

 "region": "ca-central-1"

 }

]

1.

[

 {

 "accountKey": "shared-network",

 "outputKey": "DefaultBucketOutputC7CE5936",

 "outputValue": "{\"type\":\"AccountBucket\",\"value\":{\"bucketArn\":\"arn:aws:s3:::ASEA-sharednetwork-phase1-cacentral1-18vq0emthri3h\",\"bucketName\":\"ASEA-sharednetwork-phase1-

cacentral1-18vq0emthri3h\",\"encryptionKeyArn\":\"arn:aws:kms:ca-central-1:0000000000001:key/d54a8acb-694c-4fc5-9afe-ca2b263cd0b3\",\"region\":\"ca-central-1\"}}"

 }

]

1.

5.2.9 1.9. Local Development

- 178/230 -

config.json that contains the Accelerator configuration.

The script also sets the default execution role to allow CDK to assume a role in subaccounts to deploy the phase stacks.

Now that you have all the required local files you can deploy the phase stacks using cdk.sh .

Other CDK commands are also available.

5.2.10 1.10. Testing

We use jest for unit testing. There are no integration tests but this could be set-up by configuring the Installer CodePipeline to have a webhook

on the repository and deploying changes automatically.

To run unit tests locally you can run the following command in the monorepo.

See CDK's documentation on Testing constructs for more information on how to tests CDK constructs.

1.10.1. Validating Immutable Property Changes and Logical ID Changes

The most important unit test in this project is one that validates that logical IDs and immutable properties do not change unexpectedly. To avoid the

issues described in section Resource Names and Logical IDs, Changing Logical IDs and Changing (Immutable) Properties.

This test can be found in the src/deployments/cdk/test/apps/unsupported-changes.spec.ts file. It synthesizes the Phase stacks using mocked

outputs and uses jest snapshots to compare against future changes.

The test will fail when changing immutable properties or changing logical IDs of existing resources. In case the changes are expected then the

snapshots will need to be updated. You can update the snapshots by running the following command.

See Accept Unit Test Snapshot Changes.

1.10.2. Upgrade CDK

There's a test in the file src/deployments/cdk/test/apps/unsupported-changes.spec.ts that is currently commented out. The test takes a

snapshot of the whole Phase stack and compares the snapshot to changes in the code.

{

 "acceleratorName": "ASEA",

 "acceleratorPrefix": "ASEA-",

 "acceleratorExecutionRoleName": "ASEA-PipelineRole",

 "defaultRegion": "ca-central-1"

}

1.

cd src/deployments/cdk

./cdk.sh deploy --phase 1 # deploy all phase 1 stacks

./cdk.sh deploy --phase 1 --parallel # deploy all phase 1 stacks in parallel

./cdk.sh deploy --phase 1 --account shared-network # deploy phase 1 stacks for account shared-network in all regions

./cdk.sh deploy --phase 1 --region ca-central-1 # deploy phase 1 stacks for region ca-central-1 for all accounts

./cdk.sh deploy --phase 1 --account shared-network --region ca-central-1 # deploy phase 1 stacks for account shared-network and region ca-central

cd src/deployments/cdk

./cdk.sh bootstrap --phase 1

./cdk.sh synth --phase 1

pnpx recursive run test -- --pass-with-no-tests --silent

pnpx run test -- -u

test('templates should stay exactly the same', () => {

 for (const [stackName, resources] of Object.entries(stackResources)) {

 // Compare the relevant properties to the snapshot

 expect(resources).toMatchSnapshot(stackName);

 }

});

5.2.10 1.10. Testing

- 179/230 -

https://docs.aws.amazon.com/cdk/latest/guide/testing.html
https://jestjs.io/docs/en/snapshot-testing
https://jestjs.io/docs/en/snapshot-testing

Before upgrading CDK we uncomment this test. We run the test to update all the snapshots. Then we update all CDK versions and run the test again

to compare the snapshots with the code using the new CDK version. If the test passes, then the upgrade should be stable.

Action Item: Automate this process.

5.2.10 1.10. Testing

- 180/230 -

5.3 1. Technology Stack

5.3.1 1.1. Overview

We use TypeScript, NodeJS, CDK and CloudFormation. You can find some more information in the sections below.

5.3.2 1.2. TypeScript and NodeJS

In the following sections we describe the tools and libraries used along with TypeScript.

1.2.1. pnpm

We use the pnpm package manager along with pnpm workspaces to manage all the packages in this monorepo.

https://pnpm.js.org

https://pnpm.js.org/en/workspaces

The binary pnpx runs binaries that belong to pnpm packages in the workspace.

https://pnpm.js.org/en/pnpx-cli

1.2.2. prettier

We use prettier to format code in this repository. A GitHub action makes sure that all the code in a pull requests adheres to the configured

prettier rules. See Github Actions.

1.2.3. eslint

We use eslint as a static analysis tool that checks our TypeScript code. A GitHub action makes sure that all the code in a pull requests adheres to

the configured eslint rules. See Github Actions.

5.3.3 1.3. CloudFormation

CloudFormation deploys both the Accelerator stacks and resources and the deployed stacks and resources. See Operations Guide: System

Overview for the distinction between Accelerator resources and deployed resources.

5.3.4 1.4. CDK

AWS CDK defines the cloud resources in a familiar programming language. While AWS CDK supports TypeScript, JavaScript, Python, Java, and

C#/.Net, the contributions should be made in Typescript, as outlined in the Accelerator Development First Principles.

Developers can use programming languages to define reusable cloud components known as Constructs. You compose these together into Stacks

and Apps. Learn more at https://docs.aws.amazon.com/cdk/latest/guide/home.html

5.3 1. Technology Stack

- 181/230 -

https://prettier.io
https://prettier.io
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/v1.5.6-a/.github/workflows/lint-prettier.yml#L61
https://eslint.org/
https://eslint.org/
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/v1.5.6-a/.github/workflows/lint-prettier.yml#L61
https://github.com/aws-samples/aws-secure-environment-accelerator/blob/ae8282d4537320763736fa56e05b743ce1c02611/CONTRIBUTING.md#accelerator-development-first-principles

5.4 1. Best Practices

5.4.1 1.1. TypeScript and NodeJS

1.1.1. Handle Unhandled Promises

Entry point TypeScript files -- files that start execution instead of just defining methods and classes -- should have the following code snippet at the

start of the file.

This prevents unhandled promise rejection errors by NodeJS. Please read https://medium.com/dailyjs/how-to-prevent-your-node-js-process-from-

crashing-5d40247b8ab2 for more information.

5.4.2 1.2. CloudFormation

1.2.1. Cross-Account/Region References

When managing multiple AWS accounts, the Accelerator may need permissions to modify resources in the managed accounts. For example, a transit

gateway could be created in a shared network account and it need to be shared to the perimeter account to create a VPN connection.

In a single-account environment we would could just:

create a single stack and use !Ref to refer to the transit gateway;

or deploy two stacks

one stack that contains the transit gateway and creates a CloudFormation exported output that contains the transit gateway ID;

another stack that imports the exported output value from the previous stack and uses it to create a VPN connection.

In a multi-account environment this is not possible and we had to find a way to share outputs across accounts and regions.

See Passing Outputs Between Phases.

1.2.2. Resource Names and Logical IDs

Some resources, like AWS::S3::Bucket , can have an explicit name. Setting an explicit name can introduce some possible issues.

The first issue that could occur goes as follows:

the named resource has a retention policy to retain the resource after deleting;

then the named resource is created through a CloudFormation stack;

next, an error happens while creating or updating the stack and the stack rolls back;

and finally the named resource is deleted from the stack but has a retention policy to retain, so the resource not be deleted;

Suppose then that the stack creation issue is resolved and we retry to create the named resource through the CloudFormation stack:

the named resource is created through a CloudFormation stack;

the named resource will fail to create because a resource with the given name already exists.

The best way to prevent this issue from happening is to not explicitly set a name for the resource and let CloudFormation generate the name.

Another issue could occur when changing the logical ID of the named resource. This is documented in the following section.

process.on('unhandledRejection', (reason, _) => {

 console.error(reason);

 process.exit(1);

});

1.

2.

•

•

•

•

•

•

•

•

5.4 1. Best Practices

- 182/230 -

https://medium.com/dailyjs/how-to-prevent-your-node-js-process-from-crashing-5d40247b8ab2
https://medium.com/dailyjs/how-to-prevent-your-node-js-process-from-crashing-5d40247b8ab2

1.2.3. Changing Logical IDs

When changing the logical ID of a resource CloudFormation assumes the resource is a new resource since it has a logical ID it does not know yet.

When updating a stack, CloudFormation will always prioritize resource creation before deletion.

The following issue could occur when the resource has an explicit name. CloudFormation will try to create the resource anew and will fail since a

resource with the given name already exists. Example of resources where this could happen are AWS::S3::Bucket , AWS::SecretManager::Secret .

1.2.4. Changing (Immutable) Properties

Not only changing logical IDs could cause CloudFormation to replace resources. Changing immutable properties also cause replacement of

resources. See Update behaviors of stack resources.

Be especially careful when:

changing immutable properties for a named resource. Example of a resource is AWS::Budgets::Budget ,

AWS::ElasticLoadBalancingV2::LoadBalancer .

updating network interfaces for an AWS::EC2::Instance . Not only will this cause the instance to re-create, it will also fail to attach the network

interfaces to the new EC2 instance. CloudFormation creates the new EC2 instance first before deleting the old one. It will try to attach the network

interfaces to the new instance, but the network interfaces are still attached to the old instance and CloudFormation will fail.

For some named resources, like AWS::AutoScaling::LaunchConfiguration and AWS::Budgets::Budget , we append a hash to the name of the

resource that is based on its properties. This way when an immutable property is changed, the name will also change, and the resource will be

replaced successfully. See for example src/lib/cdk-constructs/src/autoscaling/launch-configuration.ts and src/lib/cdk-constructs/

src//billing/budget.ts .

5.4.3 1.3. CDK

CDK makes heavy use of CloudFormation so all best practices that apply to CloudFormation also apply to CDK.

1.3.1. Logical IDs

The logical ID of a CDK component is calculated based on its path in the construct tree. Be careful moving around constructs in the construct tree --

e.g. changing the parent of a construct or nesting a construct in another construct -- as this will change the logical ID of the construct. Then you could

end up with the issues described in section Changing Logical IDs and section Changing (Immutable) Properties.

See Logical ID Stability for more information.

1.3.2. Moving Resources between Nested Stacks

In some cases we use nested stacks to overcome the limit of 200 CloudFormation resources per stack.

•

•

export type LaunchConfigurationProps = autoscaling.CfnLaunchConfigurationProps;

/**

 * Wrapper around CfnLaunchConfiguration. The construct adds a hash to the launch configuration name that is based on

 * the launch configuration properties. The hash makes sure the launch configuration gets replaced correctly by

 * CloudFormation.

 */

export class LaunchConfiguration extends autoscaling.CfnLaunchConfiguration {

 constructor(scope: Construct, id: string, props: LaunchConfigurationProps) {

 super(scope, id, props);

 if (props.launchConfigurationName) {

 const hash = hashSum({ ...props, path: this.node.path });

 this.launchConfigurationName = `${props.launchConfigurationName}-${hash}`;

 }

 }

}

5.4.3 1.3. CDK

- 183/230 -

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html#update-replacement
https://docs.aws.amazon.com/cdk/latest/guide/identifiers.html#identifiers_logical_id_stability
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html

In the code snippet below you can see how we generate a dynamic amount of nested stack based on the amount of interface endpoints we construct.

The InterfaceEndpoint construct contains CloudFormation resources so we have to be careful to not exceed the limit of 200 CloudFormation

resources per nested stack. That is why we limit the amount of interface endpoints to 30 per nested stack.

We have to be careful here though. Suppose the configuration file contains 40 interface endpoints. The first 30 interface endpoints will be created in

the first nested stack; the next 10 interface endpoints will be created in the second nested stack. Suppose now that we remove the first nested

endpoint from the configuration file. This will cause the 31st interface endpoint to become the 30th interface endpoint in the list and it will cause the

interface endpoint to be moved from the second nested stack to the first nested stack. This will cause the stack updates to fail since CloudFormation

will first try to create the interface endpoint in the first nested stack before removing it from the second nested stack. We do currently not support

changes to the interface endpoint configuration because of this behavior.

1.3.3. L1 vs. L2 Constructs

See AWS Construct library for an explanation on L1 and L2 constructs.

The L2 constructs for EC2 and VPC do not map well onto the Accelerator-managed resources. For this reason we mostly use L1 CDK constructs --

such as ec2.CfnVPC , ec2.CfnSubnet -- instead of using L2 CDK constructs -- such as ec2.Vpc and ec2.Subnet .

1.3.4. CDK Code Dependency on Lambda Function Code

You can read about the distinction between CDK code and runtime code in the introduction of the Development section.

CDK code can depend on runtime code. For example when we want to create a Lambda function using CDK, we need the runtime code to define the

Lambda function. We use npm scripts , npm dependencies and the NodeJS modules API to define this dependency between CDK code and

runtime code.

First of all, we create a separate folder that contains the workspace and runtime code for our Lambda function. Throughout the project we've called

these workspaces ...-lambda but it could also be named ...-runtime . See src/lib/custom-resources/cdk-acm-import-certificate/runtime/

package.json.

This workspace's package.json file needs a prepare script that compiles the runtime code. See npm-scripts .

The package.json file also needs a name and a main entry that points to the compiled code.

runtime/package.json

Now when another workspace depends on our Lambda function runtime code workspace, the prepare script will run and it will compile the Lambda

function runtime code.

Next, we add the dependency to the new workspace to the workspace that contains the CDK code using pnpm or by adding it to package.json .

let endpointCount = 0;

let endpointStackIndex = 0;

let endpointStack;

for (const endpoint of endpointConfig.endpoints) {

 if (!endpointStack || endpointCount >= 30) {

 endpointStack = new NestedStack(accountStack, `Endpoint${endpointStackIndex++}`);

 endpointCount = 0;

 }

 new InterfaceEndpoint(endpointStack, pascalCase(endpoint), {

 serviceName: endpoint,

 });

 endpointCount++;

}

{

 "name": "lambda-fn-runtime",

 "main": "dist/index.js",

 "scripts": {

 "prepare": "webpack-cli --config webpack.config.ts"

 }

}

5.4.3 1.3. CDK

- 184/230 -

https://docs.aws.amazon.com/cdk/latest/guide/constructs.html#constructs_lib
https://github.com/aws-samples/aws-secure-environment-accelerator/blob/v1.5.6-a/src/lib/custom-resources/cdk-acm-import-certificate/runtime/package.json
https://github.com/aws-samples/aws-secure-environment-accelerator/blob/v1.5.6-a/src/lib/custom-resources/cdk-acm-import-certificate/runtime/package.json
https://docs.npmjs.com/misc/scripts
https://docs.npmjs.com/misc/scripts

cdk/package.json

In the CDK code we can now resolve the path to the compiled code using the NodeJS modules API. See NodeJS modules API.

cdk/src/index.ts

You now have a CDK Lambda function that uses the compiled Lambda function runtime code.

Note: The runtime code needs to recompile every time it changes since the prepare script only runs when the runtime workspace is installed.

1.3.5. Custom Resource

We create custom resources for functionality that is not supported natively by CloudFormation. We have two types of custom resources in this

project:

Custom resource that calls an SDK method;

Custom resource that needs additional functionality and is backed by a custom Lambda function.

CDK has a helper construct for the first type of custom resources. See CDK AwsCustomResource documentation. This helper construct is for example

used in the custom resource ds-log-subscription .

The second type of custom resources requires a custom Lambda function runtime as described in the previous section. For example acm-import-

certificate is backed by a custom Lambda function.

Only a single Lambda function is created per custom resource, account and region. This is achieved by creating only a single Lambda function in the

construct tree.

{

 "devDependencies": {

 "lambda-fn-runtime": "workspace:^0.0.1"

 }

}

class LambdaFun extends Construct {

 constructor(scope: Construct, id: string) {

 super(scope, id);

 // Find the runtime package folder and resolves the `main` entry of `package.json`.

 // In our case this is `node_modules/lambda-fn-runtime/dist/index.js`.

 const runtimeMain = resolve.require('lambda-fn-runtime');

 // Find the directory containing our `index.js` file.

 // In our case this is `node_modules/lambda-fn-runtime/dist`.

 const runtimeDir = path.dirname(lambdaPath);

 new lambda.Function(this, 'Resource', {

 runtime: lambda.Runtime.NODEJS_14_X,

 code: lambda.Code.fromAsset(runtimeDir),

 handler: 'index.handler', // The `handler` function in `index.js`

 });

 }

}

1.

2.

5.4.3 1.3. CDK

- 185/230 -

https://nodejs.org/api/modules.html#modules_require_resolve_request_options
https://nodejs.org/api/modules.html#modules_require_resolve_request_options
https://docs.aws.amazon.com/cdk/api/latest/docs/aws-cdk-lib_custom-resources.AwsCustomResource.html
https://docs.aws.amazon.com/cdk/api/latest/docs/aws-cdk-lib_custom-resources.AwsCustomResource.html
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/v1.5.6-a/src/lib/custom-resources/cdk-ds-log-subscription
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/v1.5.6-a/src/lib/custom-resources/cdk-ds-log-subscription
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/v1.5.6-a/src/lib/custom-resources/cdk-acm-import-certificate
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/v1.5.6-a/src/lib/custom-resources/cdk-acm-import-certificate

src/lib/custom-resources/custom-resource/cdk/index.ts

1.3.6. Escape Hatches

Sometimes CDK does not support a property on a resource that CloudFormation does support. You can then override the property using the

addOverride or addPropertyOverride methods on CDK CloudFormation resources. See CDK escape hatches.

1.3.6.1. AUTOSCALING GROUP METADATA

An example where we override metadata is when we create a launch configuration.S

1.3.6.2. SECRET SECRETVALUE

Another example is when we want to use secretsmanager.Secret and set the secret value.

class CustomResource extends Construct {

 constructor(scope: Construct, id: string, props: CustomResourceProps) {

 super(scope, id);

 new cdk.CustomResource(this, 'Resource', {

 resourceType: 'Custom::CustomResource',

 serviceToken: this.lambdaFunction.functionArn,

 });

 }

 private get lambdaFunction() {

 const constructName = `CustomResourceLambda`;

 const stack = cdk.Stack.of(this);

 const existing = stack.node.tryFindChild(constructName);

 if (existing) {

 return existing as lambda.Function;

 }

 // The package '@aws-accelerator/custom-resources/cdk-custom-resource-runtime' contains the runtime code for the custom resource

 const lambdaPath = require.resolve('@aws-accelerator/custom-resources/cdk-custom-resource-runtime');

 const lambdaDir = path.dirname(lambdaPath);

 return new lambda.Function(stack, constructName, {

 code: lambda.Code.fromAsset(lambdaDir),

 });

 }

}

const launchConfig = new autoscaling.CfnLaunchConfiguration(this, 'LaunchConfig', { ... });

launchConfig.addOverride('Metadata.AWS::CloudFormation::Authentication', {

 S3AccessCreds: {

 type: 'S3',

 roleName,

 buckets: [bucketName],

 },

});

launchConfig.addOverride('Metadata.AWS::CloudFormation::Init', {

 configSets: {

 config: ['setup'],

 },

 setup: {

 files: {

 // Add files here

 },

 services: {

 // Add services here

 },

 commands: {

 // Add commands here

 },

 },

});

function setSecretValue(secret: secrets.Secret, value: string) {

 const cfnSecret = secret.node.defaultChild as secrets.CfnSecret; // Get the L1 resource that backs this L2 resource

 cfnSecret.addPropertyOverride('SecretString', value); // Override the property `SecretString` on the L1 resource

 cfnSecret.addPropertyDeletionOverride('GenerateSecretString'); // Delete the property `GenerateSecretString` from the L1 resource

}

5.4.3 1.3. CDK

- 186/230 -

https://docs.aws.amazon.com/cdk/latest/guide/cfn_layer.html

5.5 1. How to Contribute

5.5.1 1.1. General

Please first refer to and comply with the Contributing and Governance document found here

5.5.2 1.2. Adding New Functionality?

Before making a change or adding new functionality you have to verify what kind of functionality is being added.

Is it an Accelerator-management change?

Is the change related to the Installer stack?

Is the change CDK related?

Make the change in src/installer/cdk .

Is the change runtime related?

Make the change in src/installer/cdk/assets .

Is the change related to the Initial Setup stack?

Is the change CDK related?

Make the change in src/core/cdk

Is the change runtime related?

Make the change in src/core/runtime

Is it an Accelerator-managed change?

Is the change related to the Phase stacks?

Is the change CDK related?

Make the change in src/deployments/cdk

Is the change runtime related?

Make the change in src/deployments/runtime

5.5.3 1.3. Create a CDK Lambda Function with Lambda Runtime Code

See CDK Code Dependency on Lambda Function Code for a short introduction.

5.5.4 1.4. Create a Custom Resource

See Custom Resource and Custom Resources for a short introduction.

Create a separate folder that contains the CDK and Lambda function runtime code, e.g. src/lib/custom-resources/my-custom-resource ;

Create a folder my-custom-resource that contains the CDK code;

Create a package.json file with a dependency to the my-custom-resource/runtime package;

Create a cdk folder that contains the source of the CDK code;

Create a folder my-custom-resource/runtime that contains the runtime code;

Create a runtime/package.json file with a "name" , "prepare" script and a "main" ;

Create a runtime/webpack.config.ts file that compiles TypeScript code to a single JavaScript file;

Create a runtime/src folder that contains the source of the Lambda function runtime code;

You can look at the acm-import-certificate custom resource as an example.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

a.

b.

3.

a.

b.

c.

5.5 1. How to Contribute

- 187/230 -

https://github.com/aws-samples/aws-secure-environment-accelerator/blob/main/CONTRIBUTING.md
https://github.com/aws-samples/aws-secure-environment-accelerator/tree/v1.5.6-a/src/lib/custom-resources/cdk-acm-import-certificate

It is best practice to add tags to any resources that the custom resource creates using the cfn-tags library.

5.5.5 1.5. Run All Unit Tests

Run in the root of the project.

5.5.6 1.6. Accept Unit Test Snapshot Changes

Run in src/deployments/cdk .

5.5.7 1.7. Validate Code with Prettier

Run in the root of the project.

5.5.8 1.8. Format Code with Prettier

Run in the root of the project.

5.5.9 1.9. Validate Code with tslint

Run in the root of the project.

pnpm recursive run test --no-bail --stream -- --silent

pnpm run test -- -u

pnpx prettier --check **/*.ts

pnpx prettier --write **/*.ts

pnpm recursive run lint --stream --no-bail

5.5.5 1.5. Run All Unit Tests

- 188/230 -

5.6 1. AWS Internal - Accelerator Release Process

5.6.1 1.1. Creating a new Accelerator Code Release

Ensure main branch is in a suitable state

Disable branch protection for both the main branch and for the release/ branches

Create a version branch with SemVer semantics and a release/ prefix: e.g. release/v1.0.5 or release/v1.0.5-b using github UI or using the

commands below

On latest main , run: git checkout -b release/vX.Y.Z

Important: Certain git operations are ambiguous if tags and branches have the same name. Using the release/ prefix reserves the actual version

name for the tag itself; i.e. every release/vX.Y.Z branch will have a corresponding vX.Y.Z tag.

Push that branch to GitHub (if created locally)

git push origin release/vX.Y.Z

The release workflow will run, and create a DRAFT release if successful with all commits since the last tagged release.

Prune the commits that have been added to the release notes (e.g. remove any low-information commits)

Publish the release - this creates the git tag in the repo and marks the release as latest. It also bumps the version key in several project

package.json files.

Re-enable branch protection for both the main branch and for the release/ branches

Note: The Publish operation will run the following GitHub Action, which merges the release/vX.Y.Z branch to main . Branch Protection in GitHub

will cause this to fail, and why we are momentarily disabling branch protection.

1.

2.

3.

•

•

•

•

4.

5.

6.

7.

•

5.6 1. AWS Internal - Accelerator Release Process

- 189/230 -

https://semver.org/
https://github.com/aws-samples/aws-secure-environment-accelerator/blob/main/.github/workflows/publish.yml

6. Sample Sensitive Architecture

6.1 Accelerator Sample Sensitive Architecture

Overview

Account Structure

Authentication & Authorization

Logging and Monitoring

Networking

Architecture Diagrams

•

•

•

•

•

•

6. Sample Sensitive Architecture

- 190/230 -

6.2 1. AWS Secure Environment Accelerator Reference Architecture

6.2.1 1.1. Overview

The AWS Secure Environment Accelerator (ASEA) Reference Architecture is a comprehensive, multi-account AWS cloud architecture, which was

designed working backwards from AWS customers with high compliance requirements like federal, provincial and municipal governments. The ASEA

Reference Architecture has been designed to address central identity and access management, governance, data security, comprehensive logging,

and network design/segmentation per security frameworks like NIST 800-53, ITSG-33, FEDRAMP Moderate, IRAP and other Sensitive or Medium

level security profiles.

This document is solely focused on the deployed or resulting reference architecture and does NOT talk about the tooling, mechanisms, or automation

engine used to deploy the architecture. The AWS Secure Environment Accelerator (ASEA) is one tool capable of deploying this architecture (along

with many other architectures), but customers are free to choose whichever mechanism they deem appropriate to deploy it. Readers should refer to

the ASEA documentation for references to the ASEA architecture, design, operation, and troubleshooting. If using the ASEA automation engine, this

document reflects the resulting architecture deployed using one of the Medium ASEA sample configuration files. This architecture document should

stand on its own in depicting the deployed architecture.

The ASEA Architecture is a standalone architecture, irrespective of how it was delivered into a customer AWS environment. It is nonetheless

anticipated that most customers will choose to realize their ASEA Architecture via the delivery mechanism of the ASEA automation engine. Except

where absolutely necessary, this document will refrain from referencing the ASEA automation engine further.

6.2.2 1.2. Introduction

The AWS Secure Environment Accelerator (ASEA) Reference Architecture has been built with the following design principles:

Deliver security outcomes aligned with a medium level security control profile;

Maximize agility, scalability, and availability, while minimizing cost;

Enable the full capabilities of the AWS cloud;

Be adaptable to evolving technological capabilities in the underlying platform being used in the AWS Secure Environment Accelerator Architecture;

Allow for seamless auto-scaling and provide unbounded bandwidth as bandwidth requirements increase (or decrease) based on actual customer load

(a key aspect of the value proposition of cloud computing);

Architect for high availability: the design stretches across two physical AWS Availability Zones (AZ), such that the loss of any one AZ does not impact

application availability. The design can be easily extended to a third availability zone;

Operate as least privilege: all principals in the accounts are intended to operate with the lowest-feasible permission set.

1.2.1. Purpose of Document

This document is intended to outline the technical measures that are delivered by the AWS Secure Environment Accelerator Reference Architecture.

This includes a summary of the major architectural decisions.

1.

2.

3.

4.

5.

6.

7.

6.2 1. AWS Secure Environment Accelerator Reference Architecture

- 191/230 -

https://www.canada.ca/en/government/system/digital-government/modern-emerging-technologies/cloud-services/government-canada-security-control-profile-cloud-based-it-services.html#toc4
https://github.com/aws-samples/aws-secure-environment-accelerator
https://aws-samples.github.io/aws-secure-environment-accelerator/index.html

1.2.2. Architecture Summary

The central features of the AWS Secure Environment Accelerator Architecture are as follows:

6.2.2 1.2. Introduction

- 192/230 -

AWS Organization with multiple-accounts: An AWS Organization is a grouping construct for a number of separate AWS accounts that are

controlled by a single customer entity. This provides consolidated billing, account grouping using organizational units, and facilitates the

deployment of pan-organizational guardrails such as API logging with CloudTrail and preventative controls using AWS Service Control Policies

(SCPs). Separate AWS accounts provide strong control-plane and data-plane isolation between workloads and/or environments, as if they were

owned by different AWS customers. The solution provides a prescriptive AWS account structure, giving different accounts different security

personas based on its grouping.

Preventative security controls: Protect the architecture, prevent the disablement of guardrails, and block undesirable user behavior. These are

implemented using AWS Service Control Policies (SCPs). SCPs provide a guardrail mechanism principally used to deny specific or entire

categories of API operations at an AWS account, OU, or organization level. These can be used to ensure workloads are deployed only in

prescribed regions, or deny access to specific AWS services. The solution provides prescriptive SCPs.

Encryption: AWS Key Management Service (KMS) with customer-managed keys is used to encrypt data stored at rest using FIPS 140-2 validated

encryption, whether in S3 buckets, EBS volumes, RDS databases, or other AWS services storing data. Data in-transit is protected using TLS 1.2 or

higher encryption.

Centralized, isolated networking: AWS Virtual Private Clouds (VPCs) are used to create data-plane isolation between workloads, centralized in

a shared-network account. Centralization enables strong segregation of duties and cost optimization. Connectivity to on-premises environments,

internet egress, shared resources and AWS APIs are mediated at a central point of ingress/egress via the use of Transit Gateway, Site-to-Site

VPN, Next-Gen Firewalls, and AWS Direct Connect (where applicable). The centralized VPC architecture is not for all customers; for customers

less concerned with cost optimization, an option exists for local account based VPCs interconnected via the Transit Gateway in the central shared-

network account. Under both options, the architecture prescribes moving AWS public API endpoints into the customer's private VPC address

space, using centralized endpoints for cost efficiency.

Segmentation and Separation: Not only does the architecture provide strong segmentation and separation between workloads belonging to

different stages of the SDLC cycle, or between different IT administrative roles (like between networking, ingress/egress firewalls, and workloads),

it offers a strong network zoning architecture, micro-segmenting the environment by wrapping every instance or component in a stateful firewall

which is enforced in the hardware of the AWS Nitro System. All flows are tightly enforced, with lateral movement prevented between applications,

tiers within an application, and nodes in a tier of an application unless explicitly allowed. Further, routing is prevented between Dev, Test, and Prod

with recommendations on a CI/CD architecture to enable developer agility and ease code promotion between environments with appropriate

approvals.

Centralized DNS management: Amazon Route 53 is used to provide unified public and private hosted zones across the cloud environment.

Inbound and Outbound Route 53 Resolvers extend this unified view of DNS to on-premises networks.

Centralized logging: CloudTrail logs are enabled organization-wide to provide full control plane auditability across the cloud environment.

CloudWatch Logs, AWS' cloud natice logging service is used to capture a wide variety of logs including OS and application logs, VPC flow logs,

and DNS logs which are then centralized and deletion is prevented using SCPs. The architecture prescribes comprehensive log collection and

centralization across AWS services and accounts.

Centralized security monitoring: Compliance drift and security threats are surfaced across the customer's AWS organization via the automatic

deployment of a multitude of different types of detective security controls. This includes enabling the multitude of AWS security services in every

account in the customers AWS organization including Amazon GuardDuty, AWS Security Hub, AWS Config, AWS Firewall Manager, Amazon

Macie, Access Analyzer, CloudWatch Alarms with control and visibility delagated across the multi-account environment to a single central security

tooling account for easy organization-wide visibility to all security findings and compliance drift. In addition, the security account has been provided

View-Only access across the organization (including access to each account's CloudWatch console) to enable investigation during an incident.

View-Only access is different from Read-Only access in that it does not provide any access to any data. Finally, an optional add-on is available to

consume the comprehensive set of centralized logs making them searchable, providing correlation and basic dashboards.

Single Sign-On: AWS SSO is used to provide centralized IAM role assumption into AWS accounts across the organization for authorized

principals. An organization's existing identities can be sourced from a customer's existing Active Directory identity store or other 3rd party identity

provider (IdP). AWS enables MFA enforcement using Authenticator apps, Security keys and built-in authenticators, supporting WebAuthn, FIDO2,

and U2F based authentication and devices.

Centralized ingress/egress IaaS inspection: It is common to see centralized ingress/egress requirements for IaaS based workloads. The

architecture provides said functionality, enabling customers to decide if native AWS ingress/egress firewall inspection services meet their

requirements, or to augment those capabilities with 3rd party firewall appliances. The architecture supports starting with an AWS firewall, switching

to a 3rd party firewall, or a combination of ingress/egress firewall technologies.

Automation: Automation is a critical component of the architecture. It ensures guardrails are consistently applied as new AWS accounts are

added to the organization as new teams and workloads are brought onboard. It remediates compliance drift and provides guardrails in the root

organization account.

•

•

•

•

•

•

•

•

•

•

•

6.2.2 1.2. Introduction

- 193/230 -

https://aws.amazon.com/organizations/
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_type-auth.html#orgs_manage_policies_scp
https://aws.amazon.com/vpc/
https://aws.amazon.com/transit-gateway/
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://aws.amazon.com/directconnect/
https://aws.amazon.com/route53/

The following diagram illustrates the AWS ASEA reference architecture:

The following diagram illustrates an alternative AWS ASEA reference architecture which uses spoke VPCs (instead of centralized VPCs):

1.2.3. Relationship to other AWS reference architectures

The AWS Secure Environment Accelerator Architecture builds upon AWS standardized design patterns and best practices. The architecture aligns

with AWS multi-account guidance, the foundation provided by AWS Control Tower, the AWS Secure Environment Accelerator sample architecture,

and the AWS Security reference architecture.

6.2.2 1.2. Introduction

- 194/230 -

1.2.4. Document Conventions

The following conventions are used throughout this document.

1.2.4.1. AWS ACCOUNT NUMBERS

AWS account numbers are decimal-digit pseudorandom identifiers with 12 digits (e.g. 651278770121). This document will use the convention that an

AWS Organization Management (root) account has the account ID 123456789012 , and child accounts are represented by 111111111111 ,

222222222222 , etc.

For example the following ARN would refer to a VPC subnet in the ca-central-1 region in the Organization Management (root) account:

1.2.4.2. JSON ANNOTATION

Throughout the document, JSON snippets may be annotated with comments (starting with //). The JSON language itself does not define comments

as part of the specification; these must be removed prior to use in most situations, including the AWS Console and APIs.

For example:

The above is not valid JSON without first removing the comment on the fourth line.

1.2.4.3. IP ADDRESSES

The design makes use of RFC1918 addresses (e.g. 10.1.0.0/16) and RFC6598 (e.g. 100.96.250.0/23) for various networks; these will be labeled

accordingly. Any specific range or IP shown is purely for illustration purposes only.

1.2.5. Customer Naming

This document will make no reference to specific AWS customers. Where naming is required (e.g. in domain names), this document will use a

placeholder name as needed; e.g. example.ca .

arn:aws:ec2:ca-central-1:123456789012:subnet/subnet-024759b61fc305ea3

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:root" // Trust the Organization Management (root) account.
 },
 "Action": "sts:AssumeRole"
}

6.2.2 1.2. Introduction

- 195/230 -

https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc6598

6.3 1. Account Structure

6.3.1 1.1. Overview

AWS accounts are a strong isolation boundary; by default there is no control plane or data plane access from one AWS account to another. AWS

accounts provide different AWS customers an isolated private cloud tenancy inside the AWS commercial cloud. It is worth noting that users and roles

reside within AWS accounts, and are the constructs used to grant permissions within an AWS account to people, services and applications. AWS

Organizations is a service that provides centralized billing across a fleet of accounts, and optionally, some integration-points for cross-account

guardrails and cross-account resource sharing. The AWS Secure Environment Accelerator Architecture uses these features of AWS Organizations to

realize its outcomes.

6.3.2 1.2. Organization structure

The AWS Secure Environment Accelerator Architecture includes the following default AWS organization and account structure.

Note that the AWS account structure is strictly a control plane concept - nothing about this structure implies anything about the network architecture

or network flows.

6.3 1. Account Structure

- 196/230 -

1.2.1. Organization Management (root) AWS Account

The AWS Organization resides in the Organization Management (root) AWS account and is traditionally an organization's first AWS account. This

account is not used for workloads - it functions primarily as a billing aggregator, and a gateway to the entire cloud footprint for high-trust principals.

Access to the Management account must be strictly controlled to a small set of highly trusted individuals from the organization. Additionally, the

Organization Management account is where the automation engine or tooling is installed to automate the deployment of the ASEA architecture and

its security guardrails. There exists a trust relationship which is used by the automation engine between child AWS accounts in the organization and

the Organization Management (root) account; from the Management account, users and roles can assume a role of the following form in child

accounts:

Note: this is the default role installed by AWS Organizations (OrganizationAccountAccessRole) when new AWS accounts are created using AWS

organizations. This role changes to AWSControlTowerExecution when Control Tower is being leveraged.

1.2.2. AWS SSO

AWS Single Sign-On (SSO) resides in the Organization Management account. Once deployed from the Organization Management account it is

recommended that AWS SSO administration is delegated to the Operations account (sometimes referred to as the Shared Services account). AWS

SSO is where you create, or connect, your workforce identities in AWS, once, and manage access centrally across your AWS organization. You can

create user identities directly in AWS SSO, or you can bring them from your Microsoft Active Directory or a standards-based identity provider, such as

Okta Universal Directory or Azure AD. AWS SSO provides a unified administration experience to define, customize, and assign fine-grained access.

Your workforce users get a user portal to access all of their assigned AWS accounts. The AWS SSO service deploys IAM roles into accounts in the

organization and associates them with the designated workforce identities . More details on SSO are available in the Authentication and

Authorization section of this document.

6.3.3 1.3. Organizational Units

Underneath the root of the organization, Organizational Units (OUs) provide a mechanism for grouping accounts into logical collections. Aside from

the benefit of the grouping itself, these collections serve as the attachment points for SCPs (preventative API-blocking controls), and Resource

Access Manager sharing (cross-account resource sharing). Additionally, the ASEA leverages OUs to assign AWS accounts a persona which includes

a consistent security personality.

The OU an AWS account is placed in determines the account's purpose, its security posture and the applicable guardrails. An account placed in the

Sandbox OU would have the least restrictive, most agile, and most cloud native functionality, whereas an account placed in the Prod OU would have

the most restrictive set of guardrails applied.

OUs are NOT designed to reflect an organization's structure, and should instead reflect major shifts in permissions. OUs should not be created for

every stage in the SDLC cycle, but those that represent a major permissions shift. For example, organizations that have multiple test stages would

often locate the Test and QA Test instances of a workload within the same AWS test account. Customers with a Pre-Prod requirement would often

either place their Pre-Prod workloads into their Prod account (alongside the Prod workloads), or in cases requiring more extensive isolation, in a

second AWS account located in the Prod OU.

{

 "Role": {

 "Path": "/",

 "RoleName": "OrganizationAccountAccessRole",

 "Arn": "arn:aws:iam::111111111111:role/OrganizationAccountAccessRole", // Child account

 "AssumeRolePolicyDocument": {

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "AWS": "arn:aws:iam::123456789012:root" // Organization Management (root) account may assume this role

 },

 "Action": "sts:AssumeRole"

 }

]

 }

 }

}

6.3.3 1.3. Organizational Units

- 197/230 -

Example use cases are as follows:

An SCP is attached to the Infrastructure OU to prevent the deletion of Transit Gateway resources in the associated accounts.

The Shared Network account uses RAM sharing to share the development line-of-business VPC with accounts in the development OU. This

makes the VPC available to a functional account in that OU used by developers, despite residing logically in the shared network account.

OUs may be nested (to a total depth of five), with SCPs and RAM sharing being controlled at the top level by the automation tooling. A typical AWS

Secure Environment Accelerator Architecture environment will have the following OUs:

1.3.1. Security OU

The accounts in this OU are considered administrative in nature with access often restricted to IT security personnel.

The Security OU is used to hold AWS accounts containing AWS security resources shared or utilized by the rest of the organization. The accounts in

the security OU (Log-Archive and Security Tooling) often represent the core or minimum viable set of accounts for organizations wishing to slim the

architecture down. No application accounts or application workloads are intended to exist within this OU.

1.3.2. Infrastructure OU

The accounts in this OU are also considered administrative in nature with access often restricted to IT operations personnel.

The Infrastructure OU is used to hold AWS accounts containing AWS infrastructure resources shared or utilized by the rest of the organization. The

accounts in the Infrastructure OU are also considered core accounts, including accounts like the centralized Shared Network account, the Perimeter

Security centralized ingress/egress account, and the Operations account. No application accounts or application workloads are intended to exist

within this OU.

•

•

6.3.3 1.3. Organizational Units

- 198/230 -

These accounts can be optionally removed depending on the outcomes a customer desires. For example, some small customers merge the

Operations account into the Security Tooling account, while others may deploy local account-based networking instead of using the Shared Network

account and may at the same time drop the central ingress/egress requirements supported by the Perimeter Security account. Eliminating these

three accounts should only be considered in the smallest of organizations.

1.3.3. Functional OUs

It is envisioned that most major applications, groups of workloads or teams will work across a set of three or four dedicated AWS accounts

provisioned across different functional OUs (Dev, Test, Prod and optionally Central). As new teams, major applications or groups of workloads are

onboarded to AWS, they will be provided with this group of new AWS accounts. New teams, groups of applications and major workloads do not share

AWS accounts, they each get their own group of unique AWS accounts providing strong segregation and isolation both between stages in the SDLC

cycle and between other workloads or teams.

1.3.4. Functional OU: Sandbox

Accounts in this OU are used by development and IT teams for proof of concept / prototyping work. The Sandbox OU offers the most cloud native,

agile experience and is used for experimentation. It is not to be used to hold production workloads or sensitive data as it offers the fewest security

controls.

These accounts are isolated at a network level and are not connected to the VPCs hosting development, test, production, or shared workloads, nor

do they have on-premises network connectivity. These accounts have direct internet access via an internet gateway (IGW). They do not route through

the Perimeter Security services account or VPC for internet access.

1.3.5. Functional OU: Dev

The Dev OU is used to hold accounts at the Development or similarly permissioned stage of the SDLC cycle, often containing sensitive data and

workloads.

This is the primary account type that an organization's developers would typically work within and hosts development tools and line of business

application solutions that are in active development. These accounts are provided internet access for IaaS based workloads via the Perimeter

Security account.

1.3.6. Functional OU: Test

The Test OU is used to hold accounts at the test or similarly permissioned (i.e. QA) stage of the SDLC cycle and typically contain sensitive data and

workloads. Accounts in this OU host testing tools and line of business application solutions that are being tested prior to promotion to production.

These accounts are provided internet access for IaaS based workloads via the Perimeter Security account. As test workloads can easily be destroyed

and recreated between test cycles, and temporarily scaled on-demand during performance testing, accounts in the Test OU are generally small in

comparison to their Dev and Prod counterparts.

1.3.7. Functional OU: Prod

The Prod OU is used to hold accounts at the Production or similarly permissioned (i.e. Pre-Prod) stage of the SDLC cycle containing sensitive

unclassified data or workloads.

Accounts in this OU host production tools and production line of business application solutions. These accounts are provided internet access for IaaS

based workloads via the Perimeter Security account. Accounts in this OU are ideally locked down with only specific Operations and Security

personnel having access.

1.3.8. Central OU

The Central OU is used to optionally hold AWS accounts which contain group or team resources used and shared across functional OUs or SDLC

boundaries like CI/CD or code promotion tools and software development tooling (source control, testing infrastructure, asset repositories). The

architecture supports creating a single central CI/CD or DevOps account, a DevOps account per set of team or application accounts, or combinations

in-between. The account structure can be customized to meet each organization's own code promotion and shared tooling requirements. These

accounts are provided internet access for IaaS based workloads via the Perimeter Security account.

6.3.3 1.3. Organizational Units

- 199/230 -

1.3.9. Functional OU: UnClass (Optional)

Non-sensitive workloads should generally be placed with sensitive workloads (Dev/Test/Prod/Central OUs), gaining the extra security benefits of

these environments. This OU is used when an organization needs to provide AWS console access to users (internal or external) without appropriate

security clearance, to enable deploying and testing AWS services not approved for use with sensitive data, or when services are not available in the

local AWS regions which support data locality and sovereignty requirements. These accounts are provided internet access for IaaS based workloads

via the Perimeter Security account. Unless this specific use case applies, we generally discourage the use of this OU.

1.3.10. Suspended OU

A suspended OU is created to act as a container for end-of-life accounts which have been closed or suspended, as suspended accounts continue to

appear in AWS organizations even after they have been closed and suspended. The DenyAll SCP is applied, which prevents all control-plane API

operations from taking place by any account principal. Should a suspended account be unintentionally re-activated, no API operations can be

performed without intervention of the cloud team.

6.3.4 1.4. Mandatory Accounts

The AWS Secure Environment Accelerator Architecture is an opinionated architecture, which partly manifests in the accounts that are deemed

mandatory within the organization. The following accounts are assumed to exist, and each has an important function with respect to the goals of the

overall Architecture.

6.3.4 1.4. Mandatory Accounts

- 200/230 -

1.4.1. Organization Management (root)

This is the Organization Management or root AWS account. Access to this account must be highly restricted, and should not contain customer

resources.

As discussed above, the Organization Management (root) account functions as the root of the AWS Organization, the billing aggregator, and

attachment point for SCPs. Workloads are not intended to run in this account.

Note: Customers deploying the AWS Secure Environment Accelerator Architecture via the [ASEA automation engine][accel_tool] will deploy into this

account.

1.4.2. Perimeter Security

This account is used for internet facing IaaS based ingress/egress security services. The perimeter account, and in particular the perimeter VPC

therein, functions as the single point of IaaS based ingress/egress from the sensitive cloud environment to the public internet and, in some cases, on-

premises networks. This provides a central point of network control through which all workload-generated IaaS traffic, both ingress and egress, must

transit. The perimeter VPC can host AWS and/or 3rd party next-generation firewalls that provide security services such as virus scanning, malware

protection, intrusion protection, TLS inspection, and web application firewall functionality. More details can be found in the Networking section of this

document.

6.3.4 1.4. Mandatory Accounts

- 201/230 -

1.4.3. Shared Network

This account is used for centralized or shared networking resources. The shared network account hosts the vast majority of the AWS-side of the

networking resources throughout the AWS Secure Environment Accelerator Architecture. Workload-scoped VPCs (Dev , Test , Prod , etc.) are

deployed in the Shared Network account, and shared via RAM sharing to the respective workload accounts based on their associated OUs. A Transit

Gateway provides connectivity from the workloads to the internet or on-premises, without permitting cross-environment (AKA "East/West traffic")

traffic (e.g. the Transit Gateway provides VRF like separation between the Dev VPC, the Test VPC, and the Prod VPC). More details can be found

in the Networking section of this document.

1.4.4. Operations (or alternatively called Shared Services)

This account is used for centralized IT Operational resources (Active Directory, traditional syslog tooling, ITSM, etc.). The operations account

provides a central location for the cloud team to provide cloud operation services to other AWS accounts across the organization and is where an

organizations cloud operations team "hangs out" or delivers tooling applicable across all accounts in the organization. The Operations account has

View-Only access to CloudWatch logs and metrics across the organization. It is where centralized Systems Manager Session Manager Automation

(remediation) documents are located. It is where organizations centralize backup automation (if automated), SSM inventory and patch jobs are

automated, and where AWS Managed Active Directory would typically be deployed and accessible to all workloads in the organization. In some AWS

documentation this is referred to as the Shared Services account.

1.4.5. Log Archive

The Log archive account is used to centralize and store immutable logs for the organization. The Log Archive account provides a central aggregation

and secure storage point for all audit logs created within the AWS Organization. This account contains a centralized storage location for copies of

every account’s audit, configuration compliance, and operational logs. It also provides a storage location for any other audit/compliance logs, as well

as application/OS logs.

As this account is used to provide long-term retention and immutable storage of logs, it is generally recommended nobody have access to this

account. Logs should generally be made directly available for local use by teams working in any account on a shorter-term retention basis. Logs will

be auto-ingested into a SIEM-like solution as they are centralized into the Log Archive account for analysis and correlation by auditors and security

teams. Access to the Log Archive account would be restricted to deep forensic analysis of logs by auditors and security teams during a forensic

investigation.

1.4.6. Security Tooling

This account is used to centralize access to AWS security tooling and consoles, as well as provide View-Only access for investigative purposes into

all accounts in the organization. The security account is restricted to authorized security and compliance personnel, and related security or audit

tools. This is an aggregation point for security services, including AWS Security Hub, GuardDuty, Macie, Config, Firewall Manager, Detective,

Inspector, and IAM Access Analyzer.

1.4.7. DevOps account and/or Shared Team/Application accounts

These accounts are used to deliver CI/CD capabilities or shared tooling - two patterns are depicted in the architecture diagram in section 1.2.2 of the

Overview - The first has a single organization wide central CI/CD or shared tooling account (named the DevOps account), the other has a CI/CD and

shared tooling account per major application team/grouping of teams/applications (named Shared-Team-N). Which pattern is used will depend

entirely on the organization's size, maturity model, delegation model of the organization and their team structures. We still generally recommend CI/

CD tooling in each developer account (i.e. using Code Commit). When designated branch names are leveraged, the branch/PR will automatically be

pulled into the centralized CI/CD tooling account. After approval(s), the code will again be automatically pushed through the SDLC cycle to the Test

and/or Prod accounts, as appropriate. Refer to this blog for more details on automating this pattern.

1.4.8. End User or Desktop account

When an organization configures hybrid on-premises to cloud networking, end-users can directly access the cloud environment using their on-

premises organization provided desktops or laptops. When hybrid access is not available, or to enable access from locations and devices whose

posture may be not be fully assessed, users can access the organization’s cloud environment via virtualized desktops and/or virtual applications

provisioned through the End User or Desktop account. The End User or Desktop account is used to provide your organization’s end-user community

access to the applications running in the environment.

6.3.4 1.4. Mandatory Accounts

- 202/230 -

https://aws.amazon.com/blogs/devops/aws-building-a-secure-cross-account-continuous-delivery-pipeline/

A dedicated Workstation VPC would be created within the End User account to hold the virtual desktops. Virtual desktops would be created within a

security group that prevents and blocks all lateral movement or communications between virtual desktops.

Different pools of desktops would exist, with most users only being provisioned desktops which could access the front-end of production applications

(or the web tier). Additional pools would be created that provide developers full access to their development environments.

6.3.5 1.5. Functional Accounts

Functional accounts are created on demand, and placed into an appropriate OU in the organization structure. The purpose of functional accounts is

to provide a secure and managed environment where project teams can use AWS resources. They provide an isolated control plane so that the

actions of one team in one account cannot inadvertently affect the work of other teams in other accounts.

Functional accounts will gain access to the RAM shared resources based on their respective parent OU. Accounts created for systemA and systemB

in the Dev OU would have control plane isolation from each other; however these would both have access to the Dev VPC (shared from the

Shared Network account).

Data plane isolation within the same VPC is achieved by default, by using appropriate security groups whenever ingress is warranted. For example,

the app tier of systemA should only permit ingress from the systemA-web security group, not an overly broad range such as 0.0.0.0/0 , or even the

entire VPCs address range.

6.3.6 1.6. Account Level Security Settings

The AWS Secure Environment Accelerator Architecture enables certain account-wide features on account creation. Namely, these include:

S3 Public Access Block

Default encryption of EBS volumes using a customer managed local account KMS key

6.3.7 1.7. Private Marketplace

The AWS Secure Environment Accelerator Architecture enables the AWS Private Marketplace for the organization. Private Marketplace helps

administrators govern which products they want their users to run on AWS by making it possible to see only products that have been allow-listed by

the organization based on compliance with an organization's security and procurement policies. When Private Marketplace is enabled, it will replace

the standard AWS Marketplace for all users, with the new custom branded and curated Private Marketplace.

1.

2.

6.3.5 1.5. Functional Accounts

- 203/230 -

https://docs.aws.amazon.com/AmazonS3/latest/dev/access-control-block-public-access.html#access-control-block-public-access-options
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#encryption-by-default

6.3.7 1.7. Private Marketplace

- 204/230 -

6.4 1. Authorization and Authentication

6.4.1 1.1. Overview

The AWS Secure Environment Accelerator Architecture makes extensive use of AWS authorization and authentication primitives from the Identity and

Access Management (IAM) service as a means to enforce the guardrail objectives of the AWS Secure Environment Accelerator Architecture, and

govern access to the set of accounts that makes up the organization.

6.4.2 1.2. Relationship to the Organization Management (root) AWS Account

AWS accounts, as a default position, are entirely self-contained with respect to IAM principals - their Users, Roles, Groups are independent and

scoped only to themselves. Accounts created by AWS Organizations deploy a default role with a trust policy back to the Organization Management

account. While it can be customized, by default this role is named the OrganizationAccountAccessRole (or AWSControlTowerExecution when

Control Tower is deployed).

As discussed, the AWS Organization resides in the Organization Management (root) account. This account is not used for workloads and is primarily

a gateway to the entire cloud footprint for a high-trust principal. It is therefore crucial that all Organization Management account credentials be

handled with extreme diligence, and with a U2F hardware key enabled as a second-factor (and stored in a secure location such as a safe) for all

users created within this account, including the root user, regardless of privilege level assigned directly within the Management account.

6.4.3 1.3. Break Glass Accounts

The Organization Management account is used to provide break glass access to AWS accounts within the organization. Break glass (which draws its

name from breaking the glass to pull a fire alarm) refers to a quick means for a person who does not have access privileges to certain AWS accounts

to gain access in exceptional circumstances, using an approved process. Access to AWS accounts within the organization is provided through AWS

SSO. The use and creation of IAM users is highly discouraged, with one exception, break glass users. It is generally recommended that organizations

create between 2 to 4 IAM break glass users within the Organization Management account. These users would have hardware based MFA enabled

and would be leveraged in exceptional circumstances to gain access to the Organization Management account or sub-accounts within the

organization by assuming a role. Use cases for break glass access include failure of the organizations IdP, an incident involving the organizations IdP,

a failure of AWS SSO, or a disaster involving the loss of an organization’s entire cloud or IdP teams.

To re-iterate, access to the Organization Management account grants ‘super admin’ status, given the organizational-wide trust relationship to the

management account. Therefore access to the 2 to 4 break glass IAM users must be tightly controlled, yet accessible via a predefined and strict

process. This process often involves one trusted individual having access to a safe containing the password and a different trusted individual having

access to a safe with the hardware MFA key – requiring 2 people to access the break glass credentials.

It is worth noting that AWS SCPs are not applicable to the Organization Management account. It is also worth noting that from within the Organization

Management account, roles can be assumed in any account within the organization which include broad exclusions from the SCPs (discussed

below). These roles are needed to allow the automation tooling to apply and update the guardrails as required, to troubleshoot and resolve issues

with the automation tooling, and to bypass the guardrails under approved exception scenarios.

Two primary roles are available for access across the organization from the Management account: the {AcceleratorPrefix}PipelineRole which is

excluded from the majority of the SCPs to enable the automation tooling to deploy, manage and update the guardrails and provide access to

troubleshoot and resolve issues with the automation tooling; and the standard OrganizationAccountAccessRole which has been only been excluded

from SCPs which strictly deliver preventative security controls. The OrganizationAccountAccessRole is within the bounds of the SCPs which protect

automation tooling deployed guardrails and functionality. Access to either of these roles is available to any IAM users or roles in the Organization

Management account.

6.4 1. Authorization and Authentication

- 205/230 -

6.4.4 1.4. Multi-Factor Authentication

The following are commonly used MFA mechanisms, supported by AWS:

RSA tokens are a strong form of hardware based MFA authentication but can only be assigned on a 1:1 basis. A unique token is required for every

user in every account. You cannot utilize the same token for multiple users or across AWS accounts.

Yubikeys are U2F compliant devices and also a strong form of hardware based MFA authentication. Yubikeys have the advantage of allowing

many:1 assignment, with multiple users and accounts able to use a single Yubikey.

Virtual MFA like Google Authenticator on a mobile device is generally considered a good hardware based MFA mechanism, but is not considered

as strong as tokens or Yubikeys. Virtual MFA also adds considerations around device charge and is not suitable for break glass type scenarios.

SMS text messages and email based one time tokens are generally considered a weak form of MFA based authentication, but still highly desirable

over no MFA.

MFA should be used by all users regardless of privilege level with some general guidelines:

Yubikeys provide the strongest form of MFA protection and are strongly encouraged for all account root users and all IAM users in the Organization

Management (root) account;

the Organization Management (root) account requires a dedicated Yubikey, such that when access is required to a sub-account root user, you do

not expose the Organization Management account’s Yubikey;

every ~50 sub-accounts requires a dedicated Yubikey to protect the root user, minimizing the required number of Yubikeys and the scope of impact

should a Yubikey be lost or compromised;

each IAM break glass user requires a dedicated Yubikey, as do any additional IAM users in the Organization Management (root) account. While

some CSPs do not recommend MFA on the break glass users, it is strongly encouraged in AWS;

the MFA devices for all account root users including the management account and the IAM break glass users should be securely stored, with well

defined access policies and procedures;

all other AWS users (AWS SSO, IAM in sub-accounts, etc.) regardless of privilege level should leverage virtual MFA devices (like Google

Authenticator on a mobile device).

6.4.5 1.5. Control Plane Access via AWS SSO

The vast majority of end-users of the AWS cloud within the organization will never use or interact with the Organization Management account, or the

root users of any child account in the organization. The AWS Secure Environment Accelerator Architecture recommends instead that AWS SSO be

provisioned in the Organization Management account (a rare case where Organization Management account deployment is mandated). SSO

administration is then delegated to the Operations account, to further minimize access to the highly restricted management account. Once delegation

is in place, the location of the AWS SSO identity source is also delegated, enabling AWS SSO to directly connect to a Managed Active Directory (AD)

or other IdP in the Operations account (this previously required an AWS Directory Connector deployed in the Organization Management account).

Users will login to AWS via the web-based endpoint for the AWS SSO service:

•

•

•

•

•

•

•

•

•

•

6.4.4 1.4. Multi-Factor Authentication

- 206/230 -

AWS SSO then authenticates the user based on the connected Managed Microsoft AD installation (in the Operations account). Based on group

membership, the user will be presented with a set of roles to assume into assigned accounts. For example, a developer may be placed into groups

that permit Administrative access in a specific developer account and Read-Only access in a test account; meanwhile an IT Cloud Administrator may

have high-privilege access to most, or all, accounts. In effect, AWS SSO adds SAML IdP capabilities to the AWS Managed Microsoft AD, with the

AWS Console acting as a service-provider (SP) in SAML parlance. Other SAML-aware SPs may also be used with AWS SSO.

1.5.1. SSO User Roles

AWS SSO automatically creates an identity provider (IdP) and associated roles in each account in the organization. The roles used by end users

have a trust policy to this IdP. When a user authenticates to AWS SSO (via the underlying Managed AD) and selects a role to assume based on their

group membership, the SSO service provides the user with temporary security credentials unique to the role session. In such a scenario, the user

has no long-term credentials (e.g. password, or access keys) and instead uses their temporary security credentials.

Users, via their AD group membership, are ultimately assigned to SSO user roles via the use of AWS SSO permission sets. A permission set is an

assignment of a particular permission policy to an AWS account. For example:

An organization might decide to use AWS Managed Policies for Job Functions that are located within the SSO service as the baseline for role-

based-access-control (RBAC) separation within an AWS account. This enables job function policies such as:

Administrator - This policy provides full access to all AWS services and resources in the account;

Power User - Provides full access to AWS services and resources, but does not allow management of users, groups and policies;

Database Administrator - Grants full access permissions to AWS services and actions required to set up and configure AWS database services;

View-Only User - This policy grants permissions to view resources and basic metadata across all AWS services. It does not provide access to get

or read workload data.

•

•

•

•

6.4.5 1.5. Control Plane Access via AWS SSO

- 207/230 -

1.5.2. Principal Authorization

Having assumed a role, a user’s permission level within an AWS account with respect to any API operation is governed by the IAM policy evaluation

logic flow (detailed here):

Having an allow to a particular API operation on the role (i.e. session policy) does not necessarily imply that API operation will succeed. As depicted

above, a deny at any level in the evaluation logic will block access to the API call; for example a restrictive permission boundary or an explicit deny

at the resource or SCP level will block the call. SCPs are used extensively as a guardrailing mechanism in the AWS Secure Environment Accelerator

Architecture, and are discussed in a later section.

6.4.6 1.6. Root Authorization

Every AWS account has a set of root credentials. These root credentials are generated on account creation with a random 64-character password. It

is important that the root credentials for each account be recovered and MFA enabled via the AWS root credential password reset process using the

account’s unique email address. To further protect these credentials, the AWS Secure Environment Accelerator Architecture specifically denies the

use of the root user via SCP. Root credentials authorize all actions for all AWS services and for all resources in the account (except anything denied

by SCPs). There are some actions which only root has the capability to perform which are found within the AWS documentation. These are typically

rare operations (e.g. creation of X.509 keys), and should not be required in the normal course of business. Root credentials should be handled with

extreme diligence, with MFA enabled per the guidance in the previous section.

6.4.7 1.7. Service Roles

A service role is an IAM role that a service assumes to perform actions in an account on the user’s behalf. When a user sets up an AWS service, the

user must define an IAM role for the service to assume. This service role must include all the permissions that are required for the service to access

the AWS resources that it needs. Service roles provide access only within a single account and cannot be used to grant access to services in other

accounts. Users can create, modify, and delete a service role from within the IAM service. For example, a user can create a role that allows Amazon

Redshift to access an Amazon S3 bucket on the user’s behalf and then load data from that bucket into an Amazon Redshift cluster. In the case of

SSO, during the process in which AWS SSO is enabled, the AWS Organizations service grants AWS SSO the necessary permissions to create

subsequent IAM roles.

6.4.8 1.8. Service Control Policies

Service Control Policies are a key preventative control used by the AWS Secure Environment Accelerator Architecture. It is crucial to note that SCPs,

by themselves, never grant permissions. They are most often used to Deny certain actions at an OU, or account level within an AWS Organization.

Since deny always overrides allow in the IAM policy evaluation logic, SCPs can have a powerful effect on all principals in any account, and can

wholesale deny entire categories of actions irrespective of the permission policy attached to the principal itself - even the root user of the account.

6.4.6 1.6. Root Authorization

- 208/230 -

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html

SCPs follow an inheritance pattern from all levels of the hierarchy down to the account of the organization:

In order for any principal to be able to perform an action A, it is necessary (but not sufficient) that there is an Allow on action A from all levels of the

hierarchy down to the account, and no explicit Deny anywhere. This is discussed in further detail in How SCPs Work.

The AWS Secure Environment Accelerator Architecture leverages the following SCPs in the organization:

1.8.1. Sensitive policy

This is a comprehensive policy whose main goal is to provide a compliant cloud environment for medium sensitivity workloads, namely prohibiting

any non-centralized networking, data-at-rest encryption and mandating data residency in the home region. It should be attached to all top-level OUs

with the exception of Unclassified and Sandbox.

1.8.1.1. ENCRYPTION AT REST

Note that the Encryption SCP statements above, taken together, mandate encryption at rest for block storage volumes used in EC2 and RDS

instances.

Policy Statement

ID (SID)

Description

PMP Prevents the modification or creation of AWS Private Marketplace

ROOT Prevents the use of the root user

EBS1 Prevents starting EC2 instances without volume level encryption

EBS2 Prevents the creation of an unencrypted EBS volume

EFS1 Prevents the creation of an unencrypted EFS volume

RDS Prevents the creation of an unencrypted RDS instance

AUR Prevents the creation of an unencrypted RDS Aurora cluster

OTHS Blocks miscellaneous operations and services including Leave Organization, Modify Payment Methods, Object Sharing,

Disabling SSO, and Lightsail, Sumerian, Gamelift, AppFlow, and IQ.

NET2 Prevents the creation of any networking infrastructure such as VPCs, gateways, peering, VPN, etc. Additionally blocks

making objects public (RDS, EMR, EC2, etc.) and the creation of IAM users, groups and access keys

GBL2 Within services that are exempted from GBL1, scope the use of those services to the us-east-1 region (ACM, KMS, SNS)

GBL1 Prevents the use of any service in any non-approved AWS region with the exception of services that are considered

global; e.g. CloudFront, IAM, STS, etc.

6.4.8 1.8. Service Control Policies

- 209/230 -

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps-about.html

1.8.2. Unclassified policy

This policy is only used on the Unclassified OU. This policy is broadly similar to Sensitive; however it relaxes the requirement for non-approved region

usage to include additional approved regions. The GLBL2 services are moved into the GLBL1 policy.

1.8.3. Sandbox policy

This policy is only used on the Sandbox OU and is only appropriate for accounts in which AWS service experimentation is taking place. This policy is

broadly similar to Unclassified; however it does not prohibit network infrastructure creation (e.g. VPCs, IGWs), dropping the NET2 section.

1.8.4. Guardrail Protection (Parts 0 and 1)

These guardrails apply across the organization and protect the guardrails and infrastructure deployed by the automation tooling. Note that this policy

is split into two parts due to a current limitation of SCP sizing, but logically it should be considered a single policy.

Note: Two versions of the Part-0 policy exist (CoreOUs and WkldOUs), with the Wkld OUs version of the policy removing SNS , RDGW , and KIN

sections as they are not relevant outside the Security and Infrastructure OUs.

Policy Statement ID

(SID)

Description

TAG1 Prevents creation, deletion and modification of a protected security group

TAG2 Prevents creation, deletion and modification and use of any protected IAM resource

S3 Prevents deletion and modification of any S3 bucket used by the automation tooling incl. centralized logs

CFN Prevents creation, deletion or modification of any CloudFormation stacks deployed by the automation tooling

ALM Prevents deletion and modification of protected cloudwatch alarms which alert on significant control plane events

ROL Prevents any IAM operation on protected IAM resources

SSM Prevents creation, deletion or modification of any SSM resource deployed by the automation tooling

LOG Prevents the deletion and modification of any CloudWatch Log groups and VPC flow logs

LOG2 Additional CloudWatch Log group protections

LAM Prevents the creation, deletion and modification of any Lambda functions deployed by the automation tooling

NET1 Prevents deletion of any protected networking (VPC) constructs like subnets and route tables

NFW Prevents destructive operations on protected AWS Network Firewalls

CT Prevents deletion and modification of protected Cloud Trails

CON Protects AWS Config configuration from modification or deletion

CWE Prevents deletion and modification of protected CloudWatch events

RUL Protects AWS Config rules from modification or deletion

Deny Protects deletion and modification of protected KMS keys

IAM Protects creation, deletion, and modification of protected IAM policies

ACM Prevents deletion of a protected certificates and Load Balancers

SEC Prevents the deletion and modification to AWS security services like GuardDuty, Security Hub, Macie, Firewall Manager,

Access Analyzer, password policies, and resource shares

SNS Prevents creation, deletion and modification of a protected SNS topics

RDGW Prevents the modification of the role used for Remote Desktop Gateway

KIN Prevents creation, deletion and modification of a protected Kinesis streams

6.4.8 1.8. Service Control Policies

- 210/230 -

1.8.5. Quarantine New Object

This policy is attached to an account to ‘quarantine’ it - to prevent any AWS operation from taking place. This is useful in the case of an account with

credentials which are believed to have been compromised. This policy is also applied to new accounts upon creation. After the installation of

guardrails, it is removed. In the meantime, it prevents all AWS control plane operations except by principals required to deploy guardrails.

Policy Statement ID (SID) Description

DenyAllAWSServicesExceptBreakglassRoles Blanket denial on all AWS control plane operations for all non-break-glass roles

6.4.8 1.8. Service Control Policies

- 211/230 -

6.5 1. Logging and Monitoring

6.5.1 1.1. Overview

The AWS Secure Environment Accelerator Architecture requires the following security services be deployed across the organization. These services,

taken together, provide a comprehensive picture of the security posture of the organization.

6.5.2 1.2. CloudTrail

The AWS CloudTrail service provides a comprehensive log of control plane and data plane operations (audit history) of all actions taken against most

AWS services, including users logging into accounts. A CloudTrail Organizational trail should be deployed into the organization. For each account,

this captures management events and optionally S3 data plane events taking place by every principal in every account in the organization. These

records are sent to both a CloudWatch log group in the Organization Management account and an S3 bucket in the Log Archive account. The trail

itself cannot be modified or deleted by any principal in any child account. This provides an audit trail for detective purposes in the event of the need

for forensic analysis into account usage. The logs themselves provide an integrity guarantee: every hour, CloudTrail produces a digest of that hour’s

log files, with a hash, and signs it with its own private key. This makes it computationally infeasible to modify, delete or forge CloudTrail log files

without detection. This process is detailed here. The Log Archive bucket is protected with SCPs and has versioning enabled ensuring deleted or

overwritten files are retained.

6.5.3 1.3. VPC Flow Logs

VPC Flow Logs capture information about the IP traffic going to and from network interfaces in an AWS Account VPC such as source and destination

IPs, protocol, ports, and success/failure of the flow. The AWS Secure Environment Accelerator Architecture enables ALL (i.e. both accepted and

rejected traffic) logs for all VPCs in all accounts in both a local CloudWatch log group and an S3 bucket in the log-archive account. It is important to

use custom flow log formats to ensure all fields are captured as important fields are not part of the basic format. More details about VPC Flow Logs

are available here.

It should be noted that certain categories of network flows are not captured, including traffic to and from the instance metadata service

(169.254.169.254), and DNS traffic with an Amazon VPC resolver (available in DNS resolver logs).

6.5.4 1.4. GuardDuty

Amazon GuardDuty is a cloud native threat detection and Intrusion Detection Service (IDS) that continuously monitors for malicious activity and

unauthorized behavior to protect your AWS accounts and workloads. The service uses machine learning, anomaly detection, and integrated threat

intelligence to identify and prioritize potential threats. GuardDuty uses a number of data sources including VPC Flow Logs, DNS logs, CloudTrail logs

and several threat feeds.

The AWS Secure Environment Accelerator Architecture requires GuardDuty be enabled at the Organization level, and delegating the Security

account as the GuardDuty Administrative account. The GuardDuty Administrative account should be auto-enabled to add new accounts as they come

online. Note that this should be done in every region as a defense in depth measure, with the understanding that the SCPs will prevent service usage

in all other regions.

6.5.5 1.5. Config

AWS Config provides a detailed view of the resources associated with each account in the AWS Organization, including how they are configured,

how they are related to one another, and how the configurations have changed on a recurring basis. Resources can be evaluated on the basis of

their compliance with Config Rules - for example, a Config Rule might continually examine EBS volumes and check that they are encrypted.

Config may be enabled at the Organization level - this provides an overall view of the compliance status of all resources across the organization. The

AWS Config multi-account multi-region data aggregation capability has been located in both the Organization Management account and the Security

account.

6.5 1. Logging and Monitoring

- 212/230 -

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-log-file-validation-intro.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_organizations.html
https://docs.aws.amazon.com/config/latest/developerguide/WhatIsConfig.html
https://docs.aws.amazon.com/organizations/latest/userguide/services-that-can-integrate-config.html

6.5.6 1.6. CloudWatch Logs

CloudWatch Logs is AWS’ log aggregator service, used to monitor, store, and access log files from EC2 instances, AWS CloudTrail, Route 53, and

other sources. The AWS Secure Environment Accelerator Architecture requires that log subscriptions are created for all log groups in all workload

accounts, and streamed into S3 in the log-archive account (via Kinesis) for analysis and long-term audit purposes. The CloudWatch log group

retention period on all log groups should be set to a medium retention period (such as 2 years) to enable easy online access.

6.5.7 1.7. SecurityHub

The primary dashboard for Operators to assess the security posture of the AWS footprint is the centralized AWS Security Hub service. Security Hub

needs to be configured to aggregate findings from Amazon GuardDuty, Amazon Macie, AWS Config, Systems Manager, Firewall Manager, Amazon

Detective, Amazon Inspector and IAM Access Analyzers. Events from security integrations are correlated and displayed on the Security Hub

dashboard as ‘findings’ with a severity level (informational, low, medium, high, critical).

The AWS Secure Environment Accelerator Architecture recommends that the current 3 Security Hub frameworks be enabled, specifically:

AWS Foundational Security Best Practices v1.0.0

PCI DSS v3.2.1

CIS AWS Foundations Benchmark v1.2.0

These frameworks will perform checks against the accounts via Config Rules that are evaluated against the AWS Config resources in scope. See the

above links for a definition of the associated controls.

6.5.8 1.8. Systems Manager Session Manager

Session Manager is a fully managed AWS Systems Manager capability that lets you manage your Amazon Elastic Compute Cloud (Amazon EC2)

instances, on-premises instances, and virtual machines (VMs) through an interactive one-click browser-based shell or through the AWS Command

Line Interface (AWS CLI). Session Manager provides secure and auditable instance management without the need to open inbound ports, maintain

bastion hosts, or manage SSH keys. Session Manager also makes it easy to comply with corporate policies that require controlled access to

instances, strict security practices, and fully auditable logs with instance access details, while still providing end users with simple one-click cross-

platform access to your managed instances.1

The AWS Secure Environment Accelerator Architecture stores encrypted session log data in both CloudWatch logs and in the centralized S3 bucket

for auditing purposes.

6.5.9 1.9. Systems Manager Inventory

AWS Systems Manager Inventory provides visibility into your AWS computing environment. AWS ASEA architecture uses SSM Inventory to collect

metadata from your managed nodes and stores this metadata in the central Log Archive S3 bucket. These logs enable customers to quickly

determine which nodes are running the software and configurations required by your software policy, and which nodes need to be updated.

6.5.10 1.10. Other Services

The following additional services are configured with their organization-wide administrative and visibility capabilities centralized to the Security

account: Macie, Firewall Manager, Access Analyzer. The following additional logging and reporting services are configured: CloudWatch Alarms, Cost

and Usage Reports, rsyslog, MAD, R53 logs, OS/App, ELB, OpenSearch SIEM.

•

•

•

6.5.6 1.6. CloudWatch Logs

- 213/230 -

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-standards-fsbp-controls.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-pci-controls.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-cis-controls.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html

6.6 1. Networking

6.6.1 1.1. Overview

The AWS Secure Environment Accelerator Architecture networking is built on a principle of centralized on-premises and internet ingress/egress,

while enforcing data plane isolation between workloads in different environments. Connectivity to on-premises environments, internet egress, shared

resources and AWS APIs are mediated at a central point of ingress/egress via the use of a Transit Gateway. Consider the following overall network

diagram:

6.6 1. Networking

- 214/230 -

https://aws.amazon.com/transit-gateway/

6.6.1 1.1. Overview

- 215/230 -

All functional accounts use RAM-shared networking infrastructure as depicted above. The workload VPCs (Dev, Test, Prod, etc) are hosted in the

Shared Network account and made available to the appropriate accounts based on their OU in the organization.

6.6.2 1.2. Perimeter

The perimeter VPC hosts the organization's perimeter security services. The Perimeter VPC is used to control the flow of traffic between AWS

Accounts and external networks for IaaS workloads: both public (internet) and in some cases private (access to on-premises datacenters). This VPC

hosts AWS Network Firewall and/or 3rd party Next Generation Firewalls (NGFW) that provide perimeter security services including virus scanning /

malware protection, Intrusion Protection services, TLS Inspection and Web Application Firewall protection. If applicable, this VPC also hosts reverse

proxy servers.

Note that this VPC is in its own isolated account, separate from Shared Network, in order to facilitate networking and security 'separation of duties'.

Internal networking teams may administer the cloud networks in Shared Network without being granted permission to administer the security

perimeter itself.

1.2.1. IP Ranges

Primary Range: The AWS Secure Environment Accelerator Architecture recommends that the perimeter VPC have a primary range in the

RFC1918 block (e.g. 10.7.4.0/22), used only for subnets dedicated to 'detonation' purposes. This primary range, in an otherwise-unused

RFC1918 range, is not intended to be routable outside of the VPC, and is reserved for future use with malware detonation capabilities of NGFW

devices.

Secondary Range: This VPC should also have a secondary range in the RFC6598 block (e.g. 100.96.250.0/23) used for the overlay network

(NGFW devices inside VPN tunnel) for all other subnets. This secondary range is assigned by an external entity, and should be carefully selected

in order to co-exist with AWS Secure Environment Accelerator Architecture deployments that exist at peer organizations; for instance other

government departments that maintain a relationship with the same shared entity in a carrier-grade NAT topology. Although this is a 'secondary'

range in VPC parlance, this VPC CIDR should be interpreted as the more 'significant' of the two with respect to Transit Gateway routing; the

Transit Gateway will only ever interact with this 'secondary' range.

•

•

6.6.2 1.2. Perimeter

- 216/230 -

https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc6598

This VPC has four subnets per AZ, each of which hosts a port used by the NGFW devices, which are deployed in an HA pair. The purpose of these

subnets is as follows.

Detonation: This is an unused subnet reserved for future use with malware detonation capabilities of the NGFW devices (e.g. 10.7.4.0/24 - not

routable except local);

Proxy: This subnet hosts reverse proxy services for web and other protocols. It also contains the three interface endpoints necessary for AWS

Systems Manager Session Manager, which enables SSH-less CLI access to authorized and authenticated principals in the perimeter account (e.g.

100.96.251.64/26);

On-Premises: This subnet hosts the private interfaces of the firewalls, corresponding to connections from the on-premises network (e.g.

100.96.250.192/26);

FW-Management: This subnet is used to host management tools and the management of the Firewalls itself (e.g. 100.96.251.160/27 - a smaller

subnet is permissible due to modest IP requirements for management instances);

Public: This subnet is the public-access zone for the perimeter VPC. It hosts the public interface of the firewalls, as well as application load

balancers that are used to balance traffic across the firewall pair. There is one Elastic IPv4 address per public subnet that corresponds to the

IPSec Customer Gateway (CGW) for the VPN connections into the Transit Gateway in Shared Networking (e.g. 100.96.250.0/26).

Outbound internet connections (for software updates, etc.) can be initiated from within the workload VPCs, and use the transparent proxy feature of

the next-gen Firewalls.

•

•

•

•

•

6.6.2 1.2. Perimeter

- 217/230 -

https://aws.amazon.com/premiumsupport/knowledge-center/ec2-systems-manager-vpc-endpoints/

Note on VPN Tunnel Redundancy: Each NGFW device manifests as a unique CGW on the AWS side (shared network account) of the IPSec VPNs.

Moreover, there are two Site-to-Site VPNs in this architecture, each with two active tunnels; this configuration is highly redundant as only one tunnel

is required per firewall to provide complete redundancy.

6.6.3 1.3. Shared Network

The Shared Network account, and the AWS networking resources therein, form the core of the cloud networking infrastructure across the account

structure. Rather than the individual accounts defining their own networks, these are instead centralized here and shared out to the relevant OUs.

Principals in a Dev OU will have access to a Dev VPC, Test OU will have access to a Test VPC and so on - all of which are owned by this account.

You can share AWS Transit Gateways, Subnets, AWS License Manager configurations, and Amazon Route 53 Resolver rules resources with AWS

Resource Access Manager (RAM). The RAM service eliminates the need to create duplicate resources in multiple accounts, reducing the operational

overhead of managing those resources in every single account.

1.3.1. Transit Gateway

The Transit Gateway is a central hub that performs several core functions within the Shared Network account.

Routing of permitted flows; for example a Workload to On-premises via the Perimeter VPC.

All routing tables in Shared Network VPCs send 0.0.0.0/0 traffic to the TGW, where its handling will be determined by the TGW Route Table (TGW-

RT) that its attachment is associated with. For example:

an HTTP request to registry.hub.docker.com from the Test VPC will go to the TGW

The Segregated TGW RT will direct that traffic to the Perimeter VPC via the IPsec VPNs

The request will be proxied to the internet, via GC-CAP if appropriate

The return traffic will again transit the IPsec VPNs

The 10.3.0.0/16 bound response traffic will arrive at the Core TGW RT, where a propagation in that TGW RT will direct the response back to the Test

VPC.

Defining separate routing domains that prohibit undesired east-west flows at the network level; for example, by prohibiting Dev to Prod traffic. For

example:

All routing tables in Shared Network VPCs send 0.0.0.0/0 traffic to the TGW, which defines where the next permissible hop is. For example,

10.2.0.0/16 Dev traffic destined for the 10.0.4.0/16 Prod VPC will be blocked by the blackhole route in the Segregated TGW RT.

Enabling centralization of shared resources; namely a shared Microsoft AD installation in the Central VPC, and access to shared VPC Endpoints in the

Endpoint VPC.

The Central VPC, and the Endpoint VPC are routable from Workload VPCs. This provides an economical way to share organization-wide resources that

are nonetheless isolated into their own VPCs. For example:

a git request in the Dev VPC to git.private-domain.ca resolves to a 10.1.0.0/16 address in the Central VPC.

The request from the Dev VPC will go to the TGW due to the VPC routing table associated with that subnet

The TGW will send the request to the Central VPC via an entry in the Segregated TGW RT

The git response will go to the TGW due to the VPC routing table associated with that subnet

The Shared TGW RT will direct the response back to the Dev VPC

The four TGW RTs exist to serve the following main functions:

Segregated TGW RT: Used as the association table for the workload VPCs; prevents east-west traffic, except to shared resources.

Core TGW RT: Used for internet/on-premises response traffic, and Endpoint VPC egress.

Shared TGW RT: Used to provide Central VPC access east-west for the purposes of response traffic to shared workloads

Standalone TGW RT: Reserved for future use. Prevents TGW routing except to the Endpoint VPC.

Note that a unique BGP ASN will need to be used for the TGW.

1.

•

•

•

•

•

•

2.

•

3.

•

•

•

•

•

•

•

•

•

•

6.6.3 1.3. Shared Network

- 218/230 -

1.3.2. Endpoint VPC

DNS functionality for the network architecture is centralized in the Endpoint VPC. It is recommended that the Endpoint VPC use a RFC1918 range -

e.g. 10.7.0.0/22 with sufficient capacity to support 60+ AWS services and future endpoint expansion, and inbound and outbound resolvers (all

figures per AZ).

1.3.3. Endpoint VPC: Interface Endpoints

The endpoint VPC hosts VPC Interface Endpoints (VPCEs) and associated Route 53 private hosted zones for all applicable services in the

designated home region. This permits traffic destined for an eligible AWS service; for example SQS, to remain entirely within the Shared Network

account rather than transiting via the IPv4 public endpoint for the service:

6.6.3 1.3. Shared Network

- 219/230 -

https://tools.ietf.org/html/rfc1918

From within an associated workload VPC such as Dev , the service endpoint (e.g. sqs.ca-central-1.amazonaws.com) will resolve to an IP in the

Endpoint VPC:

This cross-VPC resolution of the service-specific private hosted zone functions via the association of each VPC to each private hosted zone, as

depicted above.

1.3.4. Endpoint VPC: Hybrid DNS

The Endpoint VPC also hosts the common DNS infrastructure used to resolve DNS queries:

within the cloud

from the cloud to on-premises

from on-premises to the cloud

1.3.4.1. WITHIN THE CLOUD

In-cloud DNS resolution applies beyond the DNS infrastructure that is put in place to support the Interface Endpoints for the AWS services in-region.

Other DNS zones, associated with the Endpoint VPC, are resolvable the same way via an association to workload VPCs.

sh-4.2$ nslookup sqs.ca-central-1.amazonaws.com

Server: 10.2.0.2 # Dev VPC's .2 resolver.

Address: 10.2.0.2#53

Non-authoritative answer:

Name: sqs.ca-central-1.amazonaws.com

Address: 10.7.1.190 # IP in Endpoint VPC - AZ-a.

Name: sqs.ca-central-1.amazonaws.com

Address: 10.7.0.135 # IP in Endpoint VPC - AZ-b.

•

•

•

6.6.3 1.3. Shared Network

- 220/230 -

1.3.4.2. FROM CLOUD TO ON-PREMISES

DNS Resolution from the cloud to on-premises is handled via the use of a Route 53 Outbound Endpoint, deployed in the Endpoint VPC, with an

associated Resolver rule that forwards DNS traffic to the outbound endpoint. Each VPC is associated to this rule.

1.3.4.3. FROM ON-PREMISES TO CLOUD

Conditional forwarding from on-premises networks is made possible via the use of a Route 53 Inbound Endpoint. On-premises networks send

resolution requests for relevant domains to the endpoints deployed in the Endpoint VPC:

6.6.3 1.3. Shared Network

- 221/230 -

1.3.5. Workload VPCs

The workload VPCs are where line of business applications ultimately reside, segmented by environment (Dev , Test , Prod , etc). It is

recommended that the Workload VPC use a RFC1918 range (e.g. 10.2.0.0/16 for Dev , 10.3.0.0/16 for Test , etc).

Note that security groups are recommended as the primary data-plane isolation mechanism between applications that may coexist in the same VPC.

It is anticipated that unrelated applications would coexist in their respective tiers without ever permitting east-west traffic flows.

6.6.3 1.3. Shared Network

- 222/230 -

https://tools.ietf.org/html/rfc1918

The following subnets are defined by the AWS Secure Environment Accelerator Architecture:

TGW subnet: This subnet hosts the elastic-network interfaces for the TGW attachment. A /27 subnet is sufficient.

Web subnet: This subnet hosts front-end or otherwise 'client' facing infrastructure. A /20 or larger subnet is recommended to facilitate auto-

scaling.

App subnet: This subnet hosts app-tier code (EC2, containers, etc). A /19 or larger subnet is recommended to facilitate auto-scaling.

Data subnet: This subnet hosts data-tier code (RDS instances, ElastiCache instances). A /21 or larger subnet is recommended.

Mgmt subnet: This subnet hosts bastion or other management instances. A /21 or larger subnet is recommended.

Each subnet is associated with a Common VPC Route Table, as depicted above. Gateway Endpoints for relevant services (Amazon S3, Amazon

DynamoDB) are installed in the Common route tables of all Workload VPCs. Aside from local traffic or gateway-bound traffic, 0.0.0.0/0 is always

destined for the TGW.

1.3.5.1. SECURITY GROUPS

Security Groups are instance level stateful firewalls, and represent a foundational unit of network segmentation across AWS networking. Security

groups are stateful, and support ingress/egress rules based on protocols and source/destinations. While CIDR ranges are supported by the latter, it is

preferable to instead use other security groups as sources/destinations. This permits a higher level of expressiveness that is not coupled to particular

CIDR choices and works well with autoscaling; e.g.

"permit port 3306 traffic from the App tier to the Data tier"

versus

"permit port 3306 traffic from 10.0.1.0/24 to 10.0.2.0/24 .

Security group egress rules are often used in 'allow all' mode (0.0.0.0/0), with the focus primarily being on consistently allow listing required

ingress traffic. This ensures day to day activities like patching, access to Windows DNS, and to directory services can function without friction. The

provided sample security groups in the workload accounts offers a good balance that considers both security, ease of operations, and frictionless

development. They allow developers to focus on developing, enabling them to simply use the pre-created security constructs for their workloads, and

avoid the creation of wide-open security groups. Developers can equally choose to create more appropriate least-privilege security groups more

suitable for their application, if they are skilled in this area. It is expected as an application is promoted through the SDLC cycle from Dev through Test

to Prod, these security groups will be further refined by the extended customer teams to further reduce privilege, as appropriate. It is expected that

each customer will review and tailor their Security Groups based on their own security requirements.

1.3.5.2. NACLS

Network Access-Control Lists (NACLs) are stateless constructs used sparingly as a defense-in-depth measure in this architecture. AWS generally

discourages the use of NACLs given the added complexity and management burden, given the availability and ease of use provided by security

groups. Each network flow often requires four NACL entries (egress from ephemeral, ingress to destination, egress from destination, ingress to

ephemeral). The architecture recommends NACLs as a segmentation mechanism for Data subnets; i.e. deny all inbound traffic to such a subnet

except that which originates in the App subnet for the same VPC. As with security groups, we encourage customers to review and tailor their NACLs

based on their own security requirements.

1.3.6. Central VPC

The Central VPC is a network for localizing operational infrastructure that may be needed across the organization, such as code repositories, artifact

repositories, and notably, the managed Directory Service (Microsoft AD). Instances that are domain joined will connect to this AD domain - a network

flow that is made possible from anywhere in the network structure due to the inclusion of the Central VPC in all relevant association TGW RTs.

It is recommended that the Central VPC use a RFC1918 range (e.g. 10.1.0.0/16) for the purposes of routing from the workload VPCs, and a

secondary range from the RFC6598 block (e.g. 100.96.252.0/23) to support the Microsoft AD workload.

•

•

•

•

•

6.6.3 1.3. Shared Network

- 223/230 -

https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc6598

1.3.6.1. DOMAIN JOINING

An EC2 instance deployed in the Workload VPCs can join the domain corresponding to the Microsoft AD in Central provided the following

conditions are all true:

The instance needs a network path to the Central VPC (given by the Segregated TGW RT), and appropriate security group assignment;

The Microsoft AD should be 'shared' with the account the EC2 instance resides in (The AWS Secure Environment Accelerator Architecture recommends

these directories are shared to workload accounts);

The instance has the AWS managed policies AmazonSSMManagedInstanceCore and AmazonSSMDirectoryServiceAccess attached to its IAM role, or

runs under a role with at least the permission policies given by the combination of these two managed policies; and

The EC2's VPC has an associated resolver rule that directs DNS queries for the AD domain to the Central VPC.

1.3.7. Sandbox VPC

A sandbox VPC, not depicted, may be included in the AWS Secure Environment Accelerator Architecture. This is not connected to the Transit

Gateway, Perimeter VPC, on-premises network, or other common infrastructure. It contains its own Internet Gateway, and is an entirely separate

VPC with respect to the rest of the AWS Secure Environment Accelerator Architecture.

The sandbox VPC should be used exclusively for time-limited experimentation, particularly with out-of-region services, and never used for any line of

business workload or data.

1.

2.

3.

4.

6.6.3 1.3. Shared Network

- 224/230 -

6.7 1. Prescriptive Sensitive Sample Architecture Diagrams

6.7.1 1.1. Shared VPC Architecture

6.7 1. Prescriptive Sensitive Sample Architecture Diagrams

- 225/230 -

6.7.2 1.2. Spoke VPC Architecture

6.7.3 1.3. VPC and Security Group Patterns

6.7.2 1.2. Spoke VPC Architecture

- 226/230 -

6.7.3 1.3. VPC and Security Group Patterns

- 227/230 -

6.7.4 1.4. Additional Perimeter Patterns

6.7.4 1.4. Additional Perimeter Patterns

- 228/230 -

6.7.4 1.4. Additional Perimeter Patterns

- 229/230 -

7. Workshops

7.1 Accelerator Workshops

7.1.1 Accelerator Administrator Immersion Day

The Accelerator Administrator Immersion Day is focused on helping administrators who will be administering the landing zone understand how they

can design, build and operate the components in ASEA. Click here for an overview of the topics covered.

7.1.2 Accelerator Workload/Application Team Immersion Day

The Accelerator Workload/Application Team Immersion Day is focused on helping project teams understand what it means to operate within an ASEA

managed environment. Click here for an overview of the topics covered.

7. Workshops

- 230/230 -

https://catalog.us-east-1.prod.workshops.aws/v2/workshops/f3ed5d0f-d2f1-47e8-a305-168da9179aaa/en-US/sea-administrators
https://catalog.us-east-1.prod.workshops.aws/v2/workshops/f3ed5d0f-d2f1-47e8-a305-168da9179aaa/en-US/sea-members

	AWS Secure Environment Accelerator
	1. 1. AWS Secure Environment Accelerator
	1.1 1.1. Overview
	1.2 1.2. What specifically does the Accelerator deploy and manage?
	1.2.1 1.2.1. Creates AWS Account
	1.2.2 1.2.2. Creates Networking
	1.2.3 1.2.3. Cross-Account Object Sharing
	1.2.4 1.2.4. Identity
	1.2.5 1.2.5. Cloud Security Services
	1.2.6 1.2.6. Other Security Capabilities
	1.2.7 1.2.7. Centralized Logging and Alerting

	1.3 1.3. Relationship with AWS Landing Zone Solution (ALZ)
	1.4 1.4. Relationship with AWS Control Tower
	1.5 1.5. Accelerator Installation Process (Summary)

	2. Installation & Upgrades
	2.1 Accelerator Installation and Upgrades
	2.2 Installation
	2.2.1 1. Accelerator Installation Guide
	1.1. Overview
	1.2. Prerequisites
	1.2.1. General

	1.3. Production Deployment Planning
	1.3.1. General
	1.3.2. OU Structure Planning
	1.3.3. Network Configuration Planning
	1.3.4. DNS, Domain Name, TLS Certificate Planning
	1.3.5. Email Address Planning
	1.3.6. Centralized Ingress/Egress Firewalls
	1.3.7. Other

	1.4. Accelerator Pre-Install Steps
	1.4.1. General
	1.4.2. Create GitHub Personal Access Token and Store in Secrets Manager
	1.4.3. AWS Internal (Employee) Accounts Only

	1.5. Basic Accelerator Configuration
	1.6. Installation
	1.6.1. Known Installation Issues

	1.7. Post Installation
	1.8. Other Operational Considerations

	2.2.2 1. Accelerator Sample Configurations and Customization
	1.1. Summary
	1.2. Sample Configuration Files with Descriptions
	1.2.1. FULL CONFIGURATION (CONFIG.EXAMPLE.JSON)
	1.2.2. LITE WEIGHT CONFIGURATION files
	1.2.3. ULTRA-LITE SAMPLE CONFIGURATION
	1.2.4. MULTI-REGION SAMPLE CONFIGURATION (CONFIG.MULTI-REGION-EXAMPLE.JSON)
	1.2.5. TEST CONFIGURATION (CONFIG.TEST-EXAMPLE.JSON) (USE FOR TESTING OR LOW SECURITY PROFILES)

	1.3. Deployment Customizations
	1.3.1. MULTI-FILE CONFIG FILE AND YAML FORMATTING OPTION
	1.3.2. SAMPLE SNIPPETS
	1.3.3. Third Party Firewall example configs

	1.4. Other Configuration File Hints and Tips
	1.5. Config file and Deployment Protections
	1.6. Summary of Example Config File Minimum Changes for New Installs
	1.6.1. Global Options
	1.6.2. Mandatory Account Configs
	1.6.3. Workload Account Configs
	1.6.4. Organization Units

	2.2.3 1. State Machine Behavior and Inputs
	1.1. State Machine Behavior
	1.2. Accelerator State Machine Inputs
	1.2.1. Rebuild DynamoDB table contents
	1.2.2. Bypass ALL config file validation checks
	1.2.3. Bypassing SPECIFIC config file validation checks
	1.2.4. Generate verbose logging within state machine
	1.2.5. State Machine scoping inputs
	1.2.6. Example of combined inputs

	2.2.4 1. Multi-file Accelerator Config file and YAML Support Details
	1.1. Customers would like the ability to specify their configuration in YAML. This facilitates
	1.2. Customers would like the configuration file split into multiple files
	1.3. Benefits
	1.4. Steps FOR YAML
	1.5. Steps For File Split
	1.6. Dealing with Accelerator Automatic Config File Updates
	1.7. Accelerator Internal Operations
	1.8. Example
	1.9. Acceptance Criteria

	2.2.5 1. Existing Organizations / Accounts
	1.1. Considerations: Importing existing AWS Accounts / Deploying Into Existing AWS Organizations
	1.2. Process to import existing AWS accounts into an Accelerator managed Organization
	1.3. Deploying the Accelerator into an existing Organization

	2.2.6 1. How to migrate an AWS Landing Zone (ALZ) account "as is" into an AWS Secure Environment Accelerator (ASEA)
	1.1. Overview
	1.2. Prerequisites / Setup
	1.2.1. Confirm ASEA SSO and OU configuration
	1.2.2. Switch the ALZ linked account payment method to invoicing
	1.2.3. Confirm console access to the ALZ linked account and also to the email account
	1.2.4. If an Enterprise Support (ES) customer, then confirm ES is enabled on the ALZ linked account
	1.2.5. Confirm the ALZ CodePipeline is executing successfully
	1.2.6. Confirm CLI access and setup Python and the AWS Python SDK (boto3)

	1.3. Landing Zone - Disassociate the account from the ALZ
	1.3.1. Select the product for the specific linked account
	1.3.2. Confirm the product successfully terminates
	1.3.3. Go to the linked account (assume role)
	1.3.4. Under “CloudFormation” verify that the ALZ Stacks (StackSets from ALZ mgmt) were deleted
	1.3.5. Verify that the account is ready to be invited and baselined by the ASEA

	1.4. Landing Zone (ALZ) - Remove the account from the ALZ organizations and make standalone
	1.4.1. Read the following summary/considerations
	1.4.2. Verify access
	1.4.3. Verify billing flipped to invoicing
	1.4.4. Remove the account from the organizations and make standalone

	1.5. Accelerator - Invite the account into its organization
	1.5.1. From the ASEA mgmt account, send an invite to the standalone account
	1.5.2. In the former ALZ account, Accept the invitation
	1.5.3. Keep the linked account at the root level of the Organizations
	1.5.4. Activate Enterprise Support (ES) on this linked account
	1.5.5. Update (or add) the Organization Adming Role so one can assume the role into the linked account

	1.6. Accelerator - Move the linked account from the top level root OU into the appropriate OU managed by the ASEA
	1.6.1. Plan what OU this account will be moved into
	1.6.2. Move the account from the root OU to the correct OU

	1.7. Accelerator (ASEA) - Verify access control with roles, SSO, etc
	1.8. Landing Zone - Close down the ALZ core accounts and then the management account
	1.8.1. Close down the ALZ linked accounts
	1.8.2. Close down the ALZ management account

	2.3 Upgrades
	2.3.1 1. Accelerator Upgrade Guide
	1.1. General Upgrade Considerations
	1.2. Release Specific Upgrade Considerations:
	1.3. Summary of Upgrade Steps (all versions except v1.5.0)

	2.3.2 1. Accelerator v1.5.x Custom Upgrade Instructions
	1.1. Overview
	1.2. Upgrade Caveats
	1.3. Config File Conversion
	1.4. Upgrade process
	1.5. "Summary of Upgrade Steps (all versions)" (Copied from upgrade guide)
	1.6. Post Upgrade Follow-up Tasks for v1.5.x Upgrade

	2.4 Functionality
	2.4.1 Accelerator Service List
	Services

	2.4.2 1. Accelerator Pricing
	1.1. Overview
	1.2. Example Configuration File Pricing
	1.2.1. Pricing by Configuration file
	1.2.2. Pricing by AWS Account (All Configurations)
	1.2.3. Detailed Pricing by AWS Service (Lite Config – IPSec VPN Active/Active Firewalls)

	2.4.3 AWS Secure Environment Accelerator Deployment Capabilities
	Overview
	General
	Region support

	2.4.4 1. Accelerator Central Logging Implementation and File Structures
	1.1. Accelerator Central Logging Buckets
	1.1.1. Notes

	1.2. Accelerator Bucket Folders
	1.2.1. Notes

	2.4.5 Object Naming
	Accelerator Object Naming
	Defaults
	SUFFIX'S
	NO SUFFIX

	3. 1. Accelerator Basic Operation and Frequently asked Questions
	3.1 1.1. Operational Activities
	How do I add new AWS accounts to my AWS Organization?
	I tried to enroll a new account via Control Tower but it failed?
	Can I use AWS Organizations for all tasks I currently use AWS Organizations for?
	How do I make changes to items I defined in the Accelerator configuration file during installation?
	Can I update the config file while the State Machine is running? When will those changes be applied?
	What if I really mess up the configuration file?
	What if my State Machine fails? Why? Previous solutions had complex recovery processes, what's involved?
	How do I update some of the supplied sample configuration items found in reference-artifact, like SCPs and IAM policies?
	I deployed AWS Managed Active Directory (MAD) as part of my deployment, how do I manage Active Directory domain users, groups, and domain policies after deployment?
	How do I suspend an AWS account?
	I need a new VPC, where shall I define it?
	How do I modify and extend the Accelerator or execute my own code after the Accelerator provisions a new AWS account or the state machine executes?
	How can I easily access my virtual machines or EC2 instances?
	I ran the state machine but it failed when it tried to delete the default VPC? The state machine cannot delete the default VPC (Error: VPC has dependencies and cannot be deleted)

	3.2 1.2. Existing Accounts / Organizations
	How do I import an existing AWS account into my Accelerator managed AWS Organization (or what if I created a new AWS account with a different Organization trust role)?
	Is it possible to deploy the Accelerator on top of an AWS Organization that I have already installed the AWS Landing Zone (ALZ) solution into?
	What if I want to move an account from an AWS Organization that has the ALZ deployed into an AWS Organization running the Accelerator?

	3.3 1.3. End User Environment
	Is there anything my end users need to be aware of? Why do some of my end users struggle with CloudWatch Log groups errors?
	How can I leverage Accelerator deployed objects in my IaC? Do I need to manually determine the arn's and object id's of Accelerator deployed objects to leverage them in my IaC?
	How do I deploy AWS Elastic Beanstalk instances?

	3.4 1.4. Upgrades
	Can I upgrade directly to the latest release, or must I perform upgrades sequentially?
	Why do I get the error "There were errors while comparing the configuration changes:" when I update the config file?

	3.5 1.5. Support Concerns
	The Accelerator is written in CDK and deploys CloudFormation, does this restrict the Infrastructure as Code (IaC) tools that I can use?
	What happens if AWS stops enhancing the Accelerator?
	What level of Support will the ASEA have from AWS Support?
	What does it take to support the Accelerator?
	Is the Accelerator only designed and suitable for Government of Canada or PBMM customers?

	3.6 1.6. Deployed Functionality
	I wish to be in compliance with the 12 GC TBS Guardrails, what don't you cover with the provided sample architecture?
	Does the ALB perform SSL offloading?
	What is the recommended approach to manage the ALB certificates deployed by the Accelerator?
	Why do we have rsyslog servers? I thought everything was sent to CloudWatch?
	Can you deploy the solution without Fortinet Firewall Licenses?
	I installed additional software on my Accelerator deployed RDGW / rsyslog host, where did it go?
	Some sample configurations provide NACLs and Security Groups. Is that enough?
	Can I deploy the solution as the account root user?
	Is the Organizational Management root account monitored similarly to the other accounts in the organization?
	How are the perimeter firewall configurations and licensing managed after deployment?
	Can the Fortinet Firewall deployments use static private IP address assignments?
	I've noticed CloudTrail logs and in certain situation VPC flow logs are stored in the centralized log-archive account logging bucket twice?
	I need a Route53 Private Hosted Zone in my workload account. How shall I proceed?
	How do I create a role which has read access to the log-archive bucket to enabling log forwarding to my favorite SIEM solution?
	How do I create a role for use by Azure Sentinel using the new S3 Connector method?
	Does the ASEA include a full SIEM solution?
	Why are only select interface endpoints provisioned in the sample configuration files?

	3.7 1.7. Network Architecture
	We want to securely connect our on-premises networks/datacenters to our AWS Cloud PBMM tenancy, what does AWS you recommend?
	Does this configuration violate PBMM / ITSG-22/38/33 principals?
	Why do you NOT recommend using a VGW on the perimeter VPC?
	Why do you NOT recommend connecting directly to the 3rd party firewall cluster in the perimeter account? (not GWLB, not NFW)
	What if I really want to inspect this traffic inside AWS, but like the TGW architecture?
	What does the traffic flow look like for an application running in a workload account?
	How does CloudFront and API Gateway fit with the answer from question 1.7.6?

	4. Operations & Troubleshooting
	4.1 Accelerator Operations & Troubleshooting Guide
	4.2 1. System Overview
	4.2.1 1.1. Overview
	4.2.2 1.2. Installer Stack
	4.2.3 1.3. Initial Setup Stack
	1.3.1. Get or Create Configuration from S3
	1.3.2. Get Baseline from Configuration
	1.3.3. Compare Configurations
	1.3.4. Load Landing Zone Configuration
	1.3.5. Add Execution Role to Service Catalog
	1.3.6. Create Landing Zone Account
	1.3.7. Organizational Unit (OU) Validation
	1.3.8. Load Organization Configuration
	1.3.9. Install CloudFormation Role in root
	1.3.10. Create Organization Account
	1.3.11. Load Organizational Units
	1.3.12. Load Accounts
	1.3.13. Install Execution Roles
	1.3.14. Delete Default VPCs
	1.3.15. Load Limits
	1.3.16. Enable Trusted Access for Services
	1.3.17. Store All Phase Outputs
	1.3.18. Deploy Phase -1 (Negative one)
	1.3.19. Store Phase -1 Output
	1.3.20. Deploy Phase 0
	1.3.21. Store Phase 0 Output
	1.3.22. Verify Files
	1.3.23. Create Config Recorders
	1.3.24. Add SCPs to Organization
	1.3.25. Deploy Phase 1
	1.3.26. Store Phase 1 Output
	1.3.27. Account Default Settings
	1.3.28. Deploy Phase 2
	1.3.29. Store Phase 2 Output
	1.3.30. Deploy Phase 3
	1.3.31. Store Phase 3 Output
	1.3.32. Deploy Phase 4
	1.3.33. Store Phase 4 Output
	1.3.34. Associate Hosted Zones (Step removed in v1.2.1)
	1.3.35. Add Tags to Shared Resources
	1.3.36. Enable Directory Sharing
	1.3.37. Deploy Phase 5
	1.3.38. Create AD Connector
	1.3.39. Store Commit ID
	1.3.40. Detach Quarantine SCP

	4.3 1. Troubleshooting
	4.3.1 1.1. Overview
	4.3.2 1.2. Components
	1.2.1. State Machine
	1.2.2. CodeBuild
	1.2.3. CloudFormation
	1.2.4. Custom Resource
	1.2.5. CloudWatch
	1.2.6. CodePipeline

	4.3.3 1.3. Examples
	1.3.1. Example 1
	1.3.2. Example 2
	1.3.3. Example 3

	4.4 1. Common Tasks
	4.4.1 1.1. Restart the State Machine
	4.4.2 1.2. Switch To a Managed Account

	5. Developer Guide
	5.1 Accelerator Developer Guide
	5.2 1. Development Guide
	5.2.1 1.1. Overview
	5.2.2 1.2. Project Structure
	5.2.3 1.3. Installer Stack
	5.2.4 1.4. Initial Setup Stack
	1.4.1. CodeBuild and Prebuilt Docker Image
	1.4.2. Passing Data to Phase Steps and Phase Stacks

	5.2.5 1.5. Phase Steps and Phase Stacks
	5.2.6 1.6. Store outputs to SSM Parameter Store
	1.6.1. Phases and Deployments
	1.6.2. Passing Outputs between Phases
	1.6.3. Decoupling Configuration from Constructs

	5.2.7 1.7. Libraries and Tools
	1.7.1. CDK Assume Role Plugin
	1.7.2. CDK API
	1.7.3. AWS SDK Wrappers
	1.7.4. Configuration File Parsing
	1.7.4.1. ACCELERATORNAMETAGGER
	1.7.4.2. ACCELERATORSTACK
	1.7.4.3. Name Generator
	1.7.4.4. ACCOUNTSTACKS
	1.7.4.5. VPC and IMPORTEDVPC
	1.7.4.6. LIMITER

	1.7.5. Creating Stack Outputs
	1.7.5.1. Adding Tags to Shared Resources in Destination Account

	1.7.6. Custom Resources
	1.7.6.1. Externalizing AWS-SDK
	1.7.6.2. cfn-response
	1.7.6.3. cfn-tags
	1.7.6.4. webpack-base

	5.2.8 1.8. Workarounds
	1.8.1. Stacks with Same Name in Different Regions

	5.2.9 1.9. Local Development
	1.9.1. Local Installer Stack
	1.9.2. Local Initial Setup Stack
	1.9.3. Phase Stacks

	5.2.10 1.10. Testing
	1.10.1. Validating Immutable Property Changes and Logical ID Changes
	1.10.2. Upgrade CDK

	5.3 1. Technology Stack
	5.3.1 1.1. Overview
	5.3.2 1.2. TypeScript and NodeJS
	1.2.1. pnpm
	1.2.2. prettier
	1.2.3. eslint

	5.3.3 1.3. CloudFormation
	5.3.4 1.4. CDK

	5.4 1. Best Practices
	5.4.1 1.1. TypeScript and NodeJS
	1.1.1. Handle Unhandled Promises

	5.4.2 1.2. CloudFormation
	1.2.1. Cross-Account/Region References
	1.2.2. Resource Names and Logical IDs
	1.2.3. Changing Logical IDs
	1.2.4. Changing (Immutable) Properties

	5.4.3 1.3. CDK
	1.3.1. Logical IDs
	1.3.2. Moving Resources between Nested Stacks
	1.3.3. L1 vs. L2 Constructs
	1.3.4. CDK Code Dependency on Lambda Function Code
	1.3.5. Custom Resource
	1.3.6. Escape Hatches
	1.3.6.1. AutoScaling Group Metadata
	1.3.6.2. Secret SECRETVALUE

	5.5 1. How to Contribute
	5.5.1 1.1. General
	5.5.2 1.2. Adding New Functionality?
	5.5.3 1.3. Create a CDK Lambda Function with Lambda Runtime Code
	5.5.4 1.4. Create a Custom Resource
	5.5.5 1.5. Run All Unit Tests
	5.5.6 1.6. Accept Unit Test Snapshot Changes
	5.5.7 1.7. Validate Code with Prettier
	5.5.8 1.8. Format Code with Prettier
	5.5.9 1.9. Validate Code with tslint

	5.6 1. AWS Internal - Accelerator Release Process
	5.6.1 1.1. Creating a new Accelerator Code Release

	6. Sample Sensitive Architecture
	6.1 Accelerator Sample Sensitive Architecture
	6.2 1. AWS Secure Environment Accelerator Reference Architecture
	6.2.1 1.1. Overview
	6.2.2 1.2. Introduction
	1.2.1. Purpose of Document
	1.2.2. Architecture Summary
	1.2.3. Relationship to other AWS reference architectures
	1.2.4. Document Conventions
	1.2.4.1. AWS Account Numbers
	1.2.4.2. JSON Annotation
	1.2.4.3. IP Addresses

	1.2.5. Customer Naming

	6.3 1. Account Structure
	6.3.1 1.1. Overview
	6.3.2 1.2. Organization structure
	1.2.1. Organization Management (root) AWS Account
	1.2.2. AWS SSO

	6.3.3 1.3. Organizational Units
	1.3.1. Security OU
	1.3.2. Infrastructure OU
	1.3.3. Functional OUs
	1.3.4. Functional OU: Sandbox
	1.3.5. Functional OU: Dev
	1.3.6. Functional OU: Test
	1.3.7. Functional OU: Prod
	1.3.8. Central OU
	1.3.9. Functional OU: UnClass (Optional)
	1.3.10. Suspended OU

	6.3.4 1.4. Mandatory Accounts
	1.4.1. Organization Management (root)
	1.4.2. Perimeter Security
	1.4.3. Shared Network
	1.4.4. Operations (or alternatively called Shared Services)
	1.4.5. Log Archive
	1.4.6. Security Tooling
	1.4.7. DevOps account and/or Shared Team/Application accounts
	1.4.8. End User or Desktop account

	6.3.5 1.5. Functional Accounts
	6.3.6 1.6. Account Level Security Settings
	6.3.7 1.7. Private Marketplace

	6.4 1. Authorization and Authentication
	6.4.1 1.1. Overview
	6.4.2 1.2. Relationship to the Organization Management (root) AWS Account
	6.4.3 1.3. Break Glass Accounts
	6.4.4 1.4. Multi-Factor Authentication
	6.4.5 1.5. Control Plane Access via AWS SSO
	1.5.1. SSO User Roles
	1.5.2. Principal Authorization

	6.4.6 1.6. Root Authorization
	6.4.7 1.7. Service Roles
	6.4.8 1.8. Service Control Policies
	1.8.1. Sensitive policy
	1.8.1.1. Encryption at Rest

	1.8.2. Unclassified policy
	1.8.3. Sandbox policy
	1.8.4. Guardrail Protection (Parts 0 and 1)
	1.8.5. Quarantine New Object

	6.5 1. Logging and Monitoring
	6.5.1 1.1. Overview
	6.5.2 1.2. CloudTrail
	6.5.3 1.3. VPC Flow Logs
	6.5.4 1.4. GuardDuty
	6.5.5 1.5. Config
	6.5.6 1.6. CloudWatch Logs
	6.5.7 1.7. SecurityHub
	6.5.8 1.8. Systems Manager Session Manager
	6.5.9 1.9. Systems Manager Inventory
	6.5.10 1.10. Other Services

	6.6 1. Networking
	6.6.1 1.1. Overview
	6.6.2 1.2. Perimeter
	1.2.1. IP Ranges

	6.6.3 1.3. Shared Network
	1.3.1. Transit Gateway
	1.3.2. Endpoint VPC
	1.3.3. Endpoint VPC: Interface Endpoints
	1.3.4. Endpoint VPC: Hybrid DNS
	1.3.4.1. Within The Cloud
	1.3.4.2. From Cloud to On-Premises
	1.3.4.3. From On-Premises to Cloud

	1.3.5. Workload VPCs
	1.3.5.1. Security Groups
	1.3.5.2. NACLs

	1.3.6. Central VPC
	1.3.6.1. Domain Joining

	1.3.7. Sandbox VPC

	6.7 1. Prescriptive Sensitive Sample Architecture Diagrams
	6.7.1 1.1. Shared VPC Architecture
	6.7.2 1.2. Spoke VPC Architecture
	6.7.3 1.3. VPC and Security Group Patterns
	6.7.4 1.4. Additional Perimeter Patterns

	7. Workshops
	7.1 Accelerator Workshops
	7.1.1 Accelerator Administrator Immersion Day
	7.1.2 Accelerator Workload/Application Team Immersion Day

